Advertisement

Recovery of Thermodynamic Hydrate Inhibitors with Supersonic Separators in Offshore Processing of Natural Gas: The Cases of Methanol, Ethanol, and Monoethylene Glycol

  • Alexandre Mendonça TeixeiraEmail author
  • Lara de Oliveira Arinelli
  • José Luiz de MedeirosEmail author
  • Ofélia de Queiroz Fernandes Araújo
Chapter

Abstract

The high versatility of supersonic separators for natural gas (NG) processing is explored in this chapter to include the recovery of thermodynamic hydrate inhibitors (THIs), such as methanol, ethanol, and monoethylene glycol (MEG). THIs are normally injected upstream in the raw natural gas feed to prevent solid gas hydrate issues during transportation to the processing platform. Thus, normally, a small fraction of all injected THIs is routinely lost in the natural gas product after the primary three-phase high-pressure separator (HPS) at the platform. Therefore, several processing alternatives are analyzed to recover such THI losses using supersonic separators (SS). It is shown that SS can accomplish THI recovery from raw NG simultaneously removing water for water dew-point adjustment (WDPA) and removing C3+ hydrocarbons for hydrocarbon dew-point adjustment (HCDPA) from the raw NG, reducing costs of THI losses and costs of gas processing. This new process—denominated SS-THI-Recovery—is disclosed in this chapter and analyzed in terms of technical feasibility.

References

  1. Alharooni, K., Barifcani, A., Pack, D., Gubner, R., Ghodkay, V.: Inhibition effects of thermally degraded MEG on hydrate formation for gas systems. J. Petrol. Sci. Eng. 135(1), 608–617 (2015).  https://doi.org/10.1016/j.petrol.2015.10.001CrossRefGoogle Scholar
  2. Dong, L., ZhenYu, C., XingPeng, G.: The effect of acetic acid and acetate on CO2 corrosion of carbon steel. Anti-corros. Methods Mater. 55(3), 130–134 (2008).  https://doi.org/10.1108/00035590810870437CrossRefGoogle Scholar
  3. Feygin, V., Imayev, S., Alfyorov, V., Bagirov, L., Dmitriev, L., Lacey, J.: Supersonic gas technologies. In: 23rd World Gas Conference. International Gas Union, Amsterdam, The Netherlands (2006)Google Scholar
  4. Folas, G.K., Gabrielsen, J., Michelsen, M.L., Stenby, E.H., Kontogeorgis, G.M.: Application of the cubic-plus-association (CPA) equation of state to cross-associating systems. Ind. Eng. Chem. Res. 44, 3823–3833 (2005)CrossRefGoogle Scholar
  5. Gate, Inc.. Hydrates: prediction, mitigation and remediation techniques. GAT2004-GKP-2012.02, February, 2012. Pg. 1. Available at: http://www.gateinc.com/wp-content/uploads/2012/02/GAT2004-GKP-2012.02-Hydrates-Prediction-Mitigation-Methods-Remediation-Techniques-.pdf. Accessed in: 19 Oct 2014
  6. Gupta, G., Singh, S.K.: Hydrate inhibition—optimization in deep water gas field. In: SPE Oil and Gas India Conference and Exhibition, 28–30 March, 2012, Mumbai, India. SPE 153504. http://dx.doi.org/10.2118/153504-MS
  7. Haghighi, H, Chapoy, A, Burgess, R, Tohidi, B.: Experimental and thermodynamic modelling of systems containing water and ethylene glycol: application to flow assurance and gas processing. Fluid Phase Equilibria 276(1), 24–30 (2009). Elsevier. http://dx.doi.org/10.1016/j.fluid.2008.10.006CrossRefGoogle Scholar
  8. Hould, N., Elanany, M.S., Aleisa, R.M., Al-Majnouni, K.A., Al-Malki, A., Abba, I.: Evaluating polymeric inhibitors of ethane clathrate hydrates. J. Nat. Gas Sci. Eng. 24, 543–549 (2015).  https://doi.org/10.1016/j.jngse.2015.03.041CrossRefGoogle Scholar
  9. Hydro the ormen lange—langeled project. The scottish oil club. Edinburgh, October 5th, 2006. Available at: http://www.scottishoilclub.org.uk/lib/Presentation_061005_Lindholt_ScottishOilClub.pdf. Accessed 21 Aug 2018
  10. Ikeh, L., Enyi, G.C., Nasr, G.G.: Inhibition performance of mild steel corrosion in the presence of CO2, HAc and MEG. (2016) http://doi.org/10.2118/179942-MS
  11. Kanu, A., Al-Hajiri, N., Messaoud, Y., Ono, N. Mitigating hydrates in subsea oil flowlines: consider production flow monitoring and control. international petroleum technology conference, 19 January, 2014, Doha, Qatar. IPTC 17492. http://dx.doi.org/10.2523/IPTC-17492-MS
  12. Karakatsani, E.K., Kontogeorgis, G.M.: Thermodynamic modeling of natural gas systems containing water. Ind. Eng. Chem. Res. 52, 3499–3513 (2013)CrossRefGoogle Scholar
  13. Nazeri, M., Tohidi, B., Chapoy, A.: An evaluation of risk of hydrate formation at the top of a pipeline. In: SPE Asia pacific oil and gas conference and exhibition, 22–24 Oct, 2012, Perth, Australia. SPE 160404. http://dx.doi.org/10.2118/160404-MS
  14. Nazzer, C.A., Keogh, J.: Advances in glycol reclamation technology. In: Offshore Technology Conference, 1–4 May, 2006, Houston, USA. OTC 18010. http://dx.doi.org/10.4043/18010-MS
  15. Pickering, P.F., Edmonds, B., Moorwood, R.A.S., Szczepanski, R., Watson, M.J.: Evaluating new chemicals and alternatives for mitigating hydrates in oil and gas production. (2001) Available at http://feesa.net/pdf/Discussion%20Papers/010918%20%20Evaluating%20Hydrate%20Inhibitors%20-%20Rev%20A.pdf. Accessed 06 Jun 2012
  16. Psarrou, M.N., Jøsang, L.O., Sandengen, K., Østvold, T.: Carbon dioxide solubility and monoethylene glycol (MEG) degradation at MEG reclaiming/regeneration conditions. J. Chem. Eng. Data. 56 (12), 4720–4724 (2011).  https://doi.org/10.1021/je200709hCrossRefGoogle Scholar
  17. Sloan, E.D., Koh, C.A. Clathrate hydrates of natural gases, 3rd edn, 2008, CRC Press, Taylor & Francis GroupGoogle Scholar
  18. Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Exergy analysis of monoethylene glycol recovery processes for hydrate inhibition in offshore natural gas fields. J. Nat. Gas Sci. Eng. 35, 798–813 (2016).  https://doi.org/10.1016/j.jngse.2016.09.017CrossRefGoogle Scholar
  19. Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Processo para recuperar inibidores termodinâmicos de hidratos de gás de cargas de gás natural utilizando separador supersônico simultaneamente ajustando ponto de orvalho de hidrocarbonetos e ponto de orvalho de água do gás final Brazilian Patent Application No. BR 10 2017 015092 5. Filed in July 13, 2017 (2017)Google Scholar
  20. Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing. J. Nat. Gas Sci. Eng. 52, 166–186 (2018).  https://doi.org/10.1016/j.jngse.2018.01.038CrossRefGoogle Scholar
  21. Tzirakis, F., Karakatsani, E., Kontogeorgis, G.M.: Evaluation of the cubic-plus-association equation of state for ternary, quaternary, and multicomponent systems in the presence of monoethylene glycol. Ind. Eng. Chem. Res. 55(43), 11371–11382 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexandre Mendonça Teixeira
    • 1
    Email author
  • Lara de Oliveira Arinelli
    • 1
  • José Luiz de Medeiros
    • 1
    Email author
  • Ofélia de Queiroz Fernandes Araújo
    • 1
  1. 1.Escola de QuímicaFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations