Advertisement

Offshore Processing of CO2-Rich Natural Gas and the Role of Supersonic Separators—Introduction

  • Lara de Oliveira Arinelli
  • José Luiz de MedeirosEmail author
  • Alexandre Mendonça Teixeira
  • Ofélia de Queiroz Fernandes Araújo
Chapter

Abstract

This chapter gives an overview on basic subjects that justify the existence of this book, the most important being the contextualization of offshore processing of CO2-rich natural gas (NG), besides CO2 separation and destination. A discussion and bibliographic review on alternatives for CO2 removal from CO2-rich NG are included. Some basins worldwide have potential to produce oil with associated gas, yet under high gas–oil ratios and high %CO2 (≥40 mol%) which entails the onus of low-grade gas processing enchained to huge CO2 dispatch goals. Here, the oil and gas industry meets great challenges, since the oil production, the main revenue factor, is bounded to huge CO2-rich NG production with 10–80 mol% CO2. Therefore, processing solutions are needed to turn high-capacity CO2-rich NG processing rigs into feasible and safe operations, sometimes hundreds of kilometers offshore. The supersonic separator (SS) is a promising technology that fits into this context due to its capability of simultaneous adjustment of dew-points in a single compact and low-footprint operation. Regarding CO2 removal, the most indicated technology is membrane permeation, which besides being suitable for CO2 abatement services, and is also compact and modular. On the other hand, the literature already signalizes potential SS application for CO2 capture from CO2-rich NG.

References

  1. Araújo, O.Q.F., Reis, A.C., de Medeiros, J.L., Nascimento, J.F., Grava, W.M., Musse, A.P.S.: Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields. J. Clean. Prod. 155, 12–22 (2017).  https://doi.org/10.1016/j.jclepro.2016.06.073CrossRefGoogle Scholar
  2. Arinelli, L.O., Trotta, T.A.F., Teixeira, A.M., de Medeiros, J.L., Araújo, O.Q.F.: Offshore processing of CO2 rich natural gas with supersonic separator versus conventional routes. J. Nat. Gas Sci. Eng. 46, 199–221 (2017).  https://doi.org/10.1016/j.jngse.2017.07.010CrossRefGoogle Scholar
  3. Bagirov, L.A., Imaev, S.Z., Borisov, V.E.: R&D technologies for acid gases extraction from natural gases. In: SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia, 20–22 October 2015.  https://doi.org/10.2118/176127-MS
  4. Berstad, D., Neksa, P., Anantharaman, R.: Low-temperature CO2 removal from natural gas. In: 2nd Trondheim Gas Technology Conference, Energy Proceedings 2012, vol. 26, pp. 41–48.  https://doi.org/10.1016/j.egypro.2012.06.008CrossRefGoogle Scholar
  5. Burgers, W.F.J., Northrop, P.S., Kheshgi, H.S., Valencia, J.A.: Worldwide development potential for sour gas. In: GHGT-10, Energy Proceedings 2011, vol. 4, pp. 2178–2184.  https://doi.org/10.1016/j.egypro.2011.02.104CrossRefGoogle Scholar
  6. Cao, X., Yang, W.: Numerical simulation of binary-gas condensation characteristics in supersonic nozzles. J. Nat. Gas Sci. Eng. 25, 197–206 (2015).  https://doi.org/10.1016/j.jngse.2015.05.005CrossRefGoogle Scholar
  7. Castier, M.: Effect of side streams on supersonic gas separations. J. Nat. Gas Sci. Eng. 35, 299–308 (2016).  https://doi.org/10.1016/j.jngse.2016.08.065CrossRefGoogle Scholar
  8. Darman, N.H., Harun, A.R.: Technical challenges and solutions on natural gas development in Malaysia. In: The Petroleum Policy and Management Project, 4th Workshop of the China-Sichuan Basin Case Study, Beijing, 30 May–3 June 2006Google Scholar
  9. de Medeiros, J.L., Nakao, A., Grava, W.M., Nascimento, J.F., Araújo, O.Q.F.: Simulation of an offshore natural gas purification process for CO2 removal with gas−liquid contactors employing aqueous solutions of ethanolamines. Ind. Eng. Chem. Res. 52, 7074–7089 (2013).  https://doi.org/10.1021/ie302507nCrossRefGoogle Scholar
  10. de Medeiros, J.L., Arinelli, L.O., Araújo, O.Q.F.: Speed of sound of multiphase and multi-reactive equilibrium streams: a numerical approach for natural gas applications. J. Nat. Gas Sci. Eng. 46, 222–241 (2017).  https://doi.org/10.1016/j.jngse.2017.08.006CrossRefGoogle Scholar
  11. Gaffney, Cline & Associates: Exame e Avaliação de Dez Descobertas e Prospectos Selecionadas no Play do Pré-sal em Águas Profundas na Bacia de Santos, Brasil. CG/JW/RLG/C1820.00/GCABA.1914, ANP (2010)Google Scholar
  12. Hadi, S., Meri, A.M., Mahadi, A.Z., Ghafar, E.S.A., Din, S.N.A.S., Fen, S.I.: Operational challenges in managing high CO2 content gas production in Peninsular Malaysia operations. In: International Petroleum Technology Conference, Beijing, China, 26–28 March 2013.  https://doi.org/10.2523/IPTC-17082-MS
  13. Hart, A., Gnanendran, N.: Cryogenic CO2 capture in natural gas. In: GHGT-9, Energy Proceedings 2009, vol. 1, pp. 697–706.  https://doi.org/10.1016/j.egypro.2009.01.092CrossRefGoogle Scholar
  14. Holmes, A.S., Price, B.C., Ryan, J.M., Styring, R.E.: Pilot tests prove out cryogenic acid-gas/hydrocarbon separation processes. Oil Gas J. 81, 85–86 (1983)Google Scholar
  15. Honeywell, Honeywell UOP technology is used to clean natural gas on FPSO vessels, Membr. Technol. 2012, 5.  https://doi.org/10.1016/s0958-2118(12)70011-3
  16. IEA, CO2 storage in depleted gas fields, Technical study, report no 2009/01, June 2009. https://www.globalccsinstitute.com/publications/co2-storage-depleted-gas-fields. Accessed in 01 June 2017
  17. Imaev, S.Z., Bagirov, L.A., Borisov, V.E., Voytenkov, E.V, Engineering, E.: New low temperature process of CO2 recovery from natural gases. In: SPE Asia Pacific Oil & Gas Conference and Exhibition, Society of Petroleum Engineers, Adelaide, Australia, 14–16 October 2014.  https://doi.org/10.2118/171427-MS
  18. Isa, M.F.M., Azhar, M.A.: Meeting technical challenges in developing high CO2 gas field offshore. In: 24th WGC Buenos Aires, Argentina, 5–9 October 2009, IGU Committee Reports and Papers, vol. 3, pp. 2386–2390Google Scholar
  19. Kang, G., Chan, Z.P., Saleh, S.B.M., Cao, Y.: Removal of high concentration CO2 from natural gas using highpressure membrane contactors. Int. J. Greenh. Gas Control. 60, 1–9 (2017).  https://doi.org/10.1016/j.ijggc.2017.03.003CrossRefGoogle Scholar
  20. Kelley, B.T., Valencia, J.A., Northrop, P.S., Mart, C.J.: Controlled Freeze ZoneTM for developing sour gas reserves. In: GHGT-10, Energy Proceedings 2011, vol. 4, pp. 824–829.  https://doi.org/10.1016/j.egypro.2011.01.125CrossRefGoogle Scholar
  21. Langè, S., Pellegrini, L.A., Vergani, P., Lo Savio, M.: Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams. Ind. Eng. Chem. Res. 54(40), 9770–9782 (2015).  https://doi.org/10.1021/acs.iecr.5b02211CrossRefGoogle Scholar
  22. LEMIGAS, Lembaran Publikasi Minyak dan Gas Bumi 45, no2, 2011, ISSN: 2089-3396Google Scholar
  23. Machado, P.B., Monteiro, J.G.M., Medeiros, J.L., Epsom, H.D., Araujo, O.Q.F.: Supersonic separation in onshore natural gas dew point plant. J. Nat. Gas Sci. Eng. 6, 43–49 (2012).  https://doi.org/10.1016/j.jngse.2012.03.001CrossRefGoogle Scholar
  24. OE, Natuna under pressure, Offshore Engineer Digital, 01 April 2017. http://www.oedigital.com/pipelines/item/15111-natuna-under-pressure. Accessed 01 June 2017
  25. Purwanto, W.W., Muharam, Y., Pratama, Y.W., Hartono, D., Soedirman, H., Anindhito, R.: Status and outlook of natural gas industry development in Indonesia. J. Nat. Gas Sci. Eng. 29, 55–65 (2016).  https://doi.org/10.1016/j.jngse.2015.12.053CrossRefGoogle Scholar
  26. Samawe, R.A., Rostani, K., Jalil, A.M., Esa, M., Othman, N.: Concept proofing of supersonic nozzle separator for CO2 separation from natural gas using a flow loop. In: Offshore Technology Conference Asia, Offshore Technology Conference, Kuala Lumpur, Malaysia, 25–28 March 2014.  https://doi.org/10.4043/24953-MS
  27. Schinkelshoek, P., Epsom, H.D.: Supersonic gas conditioning—commercialisation of twister technology. In: GPA 87th Annual Convention Proceedings, Grapevine, Texas, USA, 2–5 March 2008, pp. 739–745Google Scholar
  28. Secchi, R., Innocenti, G., Fiaschi, D.: Supersonic Swirling Separator for natural gas heavy fractions extraction: 1D model with real gas EOS for preliminary design. J. Nat. Gas Sci. Eng. 34, 197–215 (2016).  https://doi.org/10.1016/j.jngse.2016.06.061CrossRefGoogle Scholar
  29. Shokri, A.R., Babadagli, T.: Feasibility assessment of heavy-oil recovery by CO2 injection after cold production with sands: lab-to-field scale modeling considering non-equilibrium foamy oil behavior. Appl. Energy 205, 615–625 (2017).  https://doi.org/10.1016/j.apenergy.2017.08.029CrossRefGoogle Scholar
  30. Teixeira, A.M., Arinelli, L.O., de Medeiros, J.L., Araújo, O.Q.F.: Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing. J. Nat. Gas Sci. Eng. 52, 166–186 (2018).  https://doi.org/10.1016/j.jngse.2018.01.038CrossRefGoogle Scholar
  31. The Star, Petronas invests RM3.5bil for gas project offshore Sarawak, The Star Online, 12 December 2014. http://www.thestar.com.my/business/business-news/2014/12/12/rm35bil-for-gas-project/. Accessed 01 June 2017
  32. Upstream, Brazil Aims for a Brighter Horizon, Upstream, Focus Brazil, 15 July 2016. ISSN: 0807-6472. Available at: http://www.presalpetroleo.gov.br/ppsa/conteudo/Comunica%C3%A7%C3%A3o/upstream.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lara de Oliveira Arinelli
    • 1
  • José Luiz de Medeiros
    • 1
    Email author
  • Alexandre Mendonça Teixeira
    • 1
  • Ofélia de Queiroz Fernandes Araújo
    • 1
  1. 1.Escola de QuímicaFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations