Concept Drift Detector Selection for Hoeffding Adaptive Trees

  • Moana Stirling
  • Yun Sing Koh
  • Philippe Fournier-Viger
  • Sri Devi Ravana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)


Dealing with evolving data requires strategies for detecting and quantifying change, and forgetting irrelevant examples during the model revision process. To design an adaptive classifier that is suitable for different types of streams requires us to understand the characteristics of the data stream. Current adaptive classifiers have built-in concept drift detectors used as an estimator at each node. Our research aim is to investigate the usage of different drift detectors for Hoeffding Adaptive Tree (HAT), an adaptive classifier. We proposed three variants of the proposed classifier, called HAT\(_{SEED}\), HAT\(_{HDDM_A}\), and HAT\(_{PHT}\).


Adaptive classifiers Concept drift detectors Data streams 


  1. 1.
    Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)Google Scholar
  2. 2.
    Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). Scholar
  3. 3.
    Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)Google Scholar
  4. 4.
    Bifet, A., Kirkby, R.: Data stream mining: a practical approach. Citeseer (2009)Google Scholar
  5. 5.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80. ACM (2000)Google Scholar
  6. 6.
    Frías-Blanco, I., del Campo-Ávila, J., Ramos-Jiménez, G., Morales-Bueno, R., Ortiz-Díaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on hoeffdings bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2015)CrossRefGoogle Scholar
  7. 7.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 441–4437 (2014)CrossRefGoogle Scholar
  8. 8.
    Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R.: Detecting volatility shift in data streams. In: 2014 IEEE International Conference on Data Mining, pp. 863–868. IEEE (2014)Google Scholar
  9. 9.
    Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Moana Stirling
    • 1
  • Yun Sing Koh
    • 1
  • Philippe Fournier-Viger
    • 2
  • Sri Devi Ravana
    • 3
  1. 1.The University of AucklandAucklandNew Zealand
  2. 2.Harbin Institute of Technology ShenzhenShenzhenChina
  3. 3.University of MalayaKuala LumpurMalaysia

Personalised recommendations