A Novel Synthetic Over-Sampling Technique for Imbalanced Classification of Gene Expressions Using Autoencoders and Swarm Optimization

  • Maisa DaoudEmail author
  • Michael Mayo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)


A new synthetic minority class over-sampling approach for binary (normal/cancer) classification of microarray gene expression data is proposed. The idea is to exploit a previously trained autoencoder in combination with the Particle Swarm Optimisation algorithm to generate new synthetic examples of the minority class for solving the class imbalance problem. Experiments using two different autoencoder representation sizes (500 and 30) and two base classifiers (Support Vector Machine and naïve Bayes) show that the proposed method is able to generate discriminating representations that outperformed state-of-the-art methods such as Synthetic Minority Class Over-sampling Technique and Density-Based Synthetic Minority Class Over-sampling Technique in many test cases.


Class imbalance Cancer prediction Autoencoders Classification 


  1. 1.
    Abadi, M. et. al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015).
  2. 2.
    Sukarna, B., Md Monirul, I., Xin, Y., Kazyuki, M.: MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26(2), 405–425 (2014)CrossRefGoogle Scholar
  3. 3.
    Blagus, R., Lusa, L.: Evaluation of smote for high-dimensional class-imbalanced microarray data. In: 11th International Conference on Machine Learning and Applications (icmla), vol. 2, pp. 89–94. IEEE (2012)Google Scholar
  4. 4.
    Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). Scholar
  5. 5.
    Chawla, N., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRefGoogle Scholar
  6. 6.
    Antonio, C., et al.: TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. (2015). Scholar
  7. 7.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dong, Y., Du, B., Zhang, L., Zhang, L.: Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning. IEEE Trans. Geosci. Remote Sens. 55(5), 2509–2524 (2017)CrossRefGoogle Scholar
  9. 9.
    Fawcett, T., Provost, F.: Adaptive fraud detection. Data Min. Knowl. Discov. 1(3), 291–316 (1997)CrossRefGoogle Scholar
  10. 10.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, H.I.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–8 (2009)CrossRefGoogle Scholar
  11. 11.
    Gibbons, J.D., Chakraborti, S.: Nonparametric statistical inference. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 977–979. Springer, Heidelberg (2011). Scholar
  12. 12.
    Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). Scholar
  13. 13.
    Japkowicz, N.: The class imbalance problem: significance and strategies. In: Proceedings of the International Conference on Artificial Intelligence (2005)Google Scholar
  14. 14.
    Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML 1997, Nashville, USA (1997)Google Scholar
  15. 15.
    Lin, W.J., Chen, J.J.: Class-imbalanced classifiers for high-dimensional data. Brief. Bioinform. 14(1), 13–26 (2012)CrossRefGoogle Scholar
  16. 16.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  17. 17.
    Siriseriwan, W.: Smotefamily: A Collection of Oversampling Techniques for Class Imbalance Problem Based on SMOTE (2016)Google Scholar
  18. 18.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Weiss, G.M.: Mining with rarity: a unifying framework. ACM Sigkdd Explor. Newsl. 6(1), 7–19 (2014)CrossRefGoogle Scholar
  20. 20.
    Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. ACM Sigkdd Explor. Newsl. 6(1), 80–89 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of WaikatoHamiltonNew Zealand

Personalised recommendations