Answering Multiple Conjunctive Queries with the Lifted Dynamic Junction Tree Algorithm

  • Marcel GehrkeEmail author
  • Tanya Braun
  • Ralf Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)


The lifted dynamic junction tree algorithm (LDJT) answers filtering and prediction queries efficiently for probabilistic relational temporal models by building and then reusing a first-order cluster representation of a knowledge base for multiple queries and time steps. We extend LDJT to answer conjunctive queries over multiple time steps by avoiding eliminations, while keeping the complexity to answer a conjunctive query low. The extended version of saves computations compared to an existing approach to answer multiple lifted conjunctive queries.


  1. 1.
    Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). Scholar
  3. 3.
    Braun, T., Möller, R.: Preventing groundings and handling evidence in the lifted junction tree algorithm. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 85–98. Springer, Cham (2017). Scholar
  4. 4.
    Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree algorithm. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775, pp. 54–72. Springer, Cham (2018). Scholar
  5. 5.
    Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 433–444. ACM (2012)Google Scholar
  6. 6.
    Dylla, M., Miliaraki, I., Theobald, M.: A temporal-probabilistic database model for information extraction. Proc. VLDB Endow. 6(14), 1810–1821 (2013)CrossRefGoogle Scholar
  7. 7.
    Gehrke, M., Braun, T., Möller, R.: Lifted dynamic junction tree algorithm. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 55–69. Springer, Cham (2018). Scholar
  8. 8.
    Geier, T., Biundo, S.: Approximate online inference for dynamic markov logic networks. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 764–768. IEEE (2011)Google Scholar
  9. 9.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc. Ser. B (Methodol.) 50(2), 157–224 (1988)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Manfredotti, C.E.: Modeling and inference with relational dynamic Bayesian networks. Ph.D. thesis, Ph.D. dissertation, University of Milano-Bicocca (2009)Google Scholar
  11. 11.
    Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of AAAI, vol. 8, pp. 1062–1068 (2008)Google Scholar
  12. 12.
    Murphy, K., Weiss, Y.: The factored frontier algorithm for approximate inference in DBNs. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 378–385. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  13. 13.
    Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, University of California, Berkeley (2002)Google Scholar
  14. 14.
    Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2764–2771. IEEE (2013)Google Scholar
  15. 15.
    Papai, T., Kautz, H., Stefankovic, D.: Slice normalized dynamic Markov logic networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1907–1915 (2012)Google Scholar
  16. 16.
    Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI, pp. 985–991 (2003)Google Scholar
  17. 17.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)CrossRefGoogle Scholar
  18. 18.
    de Salvo Braz, R.: Lifted first-order probabilistic inference. Ph.D. thesis, Ph.D. dissertation, University of Illinois at Urbana Champaign (2007)Google Scholar
  19. 19.
    Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1052–1060 (2013)Google Scholar
  20. 20.
    Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Theodorsson, E.: Uncertainty in measurement and total error: tools for coping with diagnostic uncertainty. Clin. Lab. Med. 37(1), 15–34 (2017)CrossRefGoogle Scholar
  22. 22.
    Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: efficient inference and applications. Mach. Learn. 82(2), 239–272 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: TP-compilation for inference in probabilistic logic programs. Int. J. Approx. Reason. 78, 15–32 (2016)CrossRefGoogle Scholar
  24. 24.
    Vlasselaer, J., Meert, W., Van den Broeck, G., De Raedt, L.: Efficient probabilistic inference for dynamic relational models. In: Proceedings of the 13th AAAI Conference on Statistical Relational AI, AAAIWS’14-13, pp. 131–132. AAAI Press (2014)Google Scholar
  25. 25.
    Wang, Y., Cao, K., Zhang, X.: Complex event processing over distributed probabilistic event streams. Comput. Math. Appl. 66(10), 1808–1821 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Information SystemsUniversity of LübeckLübeckGermany

Personalised recommendations