Advertisement

Reinterpretation with Systems of Spheres

  • Özgür Lütfü Özçep
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)

Abstract

Communicating agents in open environments such as the semantic web face the problem of inter-ontological ambiguity, i.e., the problem that some agent uses a (constant, role or concept) name differently than another agent. In this paper, we propose a strategy for online ambiguity resolution relying on the ideas of belief revision and reinterpretation. The data structures guiding the conflict resolution are systems of spheres, which, in particular, allow to select a resolution result amongst other potential results. The paper defines operators for (iterated) reinterpretation based on systems of spheres and shows that they fulfill some desirable set of properties (postulates).

Keywords

Belief revision Spheres Ontology Ambiguity 

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Log. 50, 510–530 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Eschenbach, C., Özçep, Ö.L.: Ontology revision based on reinterpretation. Log. J. IGPL 18(4), 579–616 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Grove, A.: Two modellings for theory change. J. Philos. Log. 17, 157–170 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Özçep, Ö.L.: Ontology revision through concept contraction. In: Artemov, S., Parikh, R. (eds.) Proceedings of the Workshop on Rationality and Knowledge at ESSLLI-06, pp. 79–90 (2006)Google Scholar
  5. 5.
    Özçep, Ö.L.: Towards principles for ontology integration. In: Eschenbach, C., Grüninger, M. (eds.) FOIS. Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 137–150. IOS Press (2008)Google Scholar
  6. 6.
    Özçep, Ö.L.: Iterated ontology revision by reinterpretation. In: Kern-Isberner, G., Wassermann, R. (eds.) Proceedings of the 16th International Workshop on Non-Monotonic Reasoning, NMR-2016, pp. 105–114 (2016)Google Scholar
  7. 7.
    Peppas, P.: The limit assumption and multiple revision. J. Log. Comput. 14(3), 355–371 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wassermann, R., Fermé, E.: A note on prototype revision. Spinning Ideas. Electronic Essays Dedicated to Peter Gärdenfors on his 50th Birthday (1999). http://www.lucs.lu.se/spinning/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Information Systems (IFIS)University of LübeckLübeckGermany

Personalised recommendations