Advertisement

A Logic for Reasoning About Game Descriptions

  • Dongmo Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)

Abstract

General game playing aims to develop autonomous computer players capable of playing any formally described games. The biggest challenge for such a player is to understand a game and acquire useful knowledge about the game from its description. This paper aims to develop a logical approach for reasoning about game rules. We introduce a modal logic with a sound and complete axiomatic system. The logic extends Zhang and Thielscher’s framework with two modalities to express game rules and reason about game outcomes. We use a well-known strategy game, Hex, to demonstrate how to use the logic to standardise game descriptions and verify properties of a game description.

References

  1. 1.
    Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool Publishers, San Rafael (2014)zbMATHGoogle Scholar
  2. 2.
    Love, N., Hinrichs, T., Genesereth, M.: General game playing: game description language specification. Technical report, Computer Science Department, Stanford University (2006)Google Scholar
  3. 3.
    Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)Google Scholar
  4. 4.
    Genesereth, M.M., Björnsson, Y.: The international general game playing competition. AI Mag. 34(2), 107–111 (2013)CrossRefGoogle Scholar
  5. 5.
    Swiechowski, M., Mandziuk, J.: Fast interpreter for logical reasoning in general game playing. J. Log. Comput. 24(5), 1071–1110 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Romero, J., Saffidine, A., Thielscher, M.: Solving the inferential frame problem in the general game description language. In: AAAI-2014, pp. 515–521 (2014)Google Scholar
  7. 7.
    Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata: representational frameworks for discrete dynamic systems. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 56–66. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89378-3_6CrossRefGoogle Scholar
  8. 8.
    Schiffel, S.: Symmetry detection in general game playing. In: AAAI-2010, pp. 980–985 (2010)Google Scholar
  9. 9.
    Zhang, D., Thielscher, M.: A logic for reasoning about game strategies. In: AAAI-2015, pp. 1671–1677 (2015)Google Scholar
  10. 10.
    Zhang, D., Thielscher, M.: Representing and reasoning about game strategies. J. Philos. Log. 44(2), 203–236 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blackburn, P., Rijke, M.d., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (2001)Google Scholar
  12. 12.
    Goldblatt, R.: Logics of Time and Computation. CSLI, Stanford University, Stanford (1992)zbMATHGoogle Scholar
  13. 13.
    Gale, D.: The game of hex and the Brouwer fixed-point theorem. Am. Math. Mon. 86(10), 818–827 (1979)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1), 149–166 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ågotnes, T., van der Hoek, W., Wooldridge, M.: Reasoning about coalitional games. Artif. Intell. 173(1), 45–79 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: Epistemic GDL: a logic for representing and reasoning about imperfect information games. In: IJCAI-2016, pp. 1138–1144 (2016)Google Scholar
  18. 18.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Dordrecht (2007).  https://doi.org/10.1007/978-1-4020-5839-4CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Western Sydney UniversityPenrithAustralia

Personalised recommendations