Advertisement

A Cooperative Coevolutionary Algorithm for Real-Time Underground Mine Scheduling

  • Wesley Cox
  • Tim French
  • Mark Reynolds
  • Lyndon While
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)

Abstract

We apply a cooperative coevolutionary algorithm for the real-time evolution of schedules in underground mines. The algorithm evolves simultaneously both truck dispatching and traffic light schedules for one-lane roads. The coevolutionary approach achieves high production with fewer trucks than both the widely-used DISPATCH algorithm, and commonly-used greedy heuristics.

Keywords

Evolutionary algorithms Coevolution Mine scheduling 

Notes

Acknowledgements

The authors would like to thank Ivan Zelina of Micromine Pty. Ltd. for his input.

References

  1. 1.
    Alarie, S., Gamache, M.: Overview of solution strategies used in truck dispatching systems for open pit mines. Int. J. Surf. Min., Reclam. Environ. 16(1), 59–76 (2002)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bäck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and Operators, vol. 1. CRC Press, Boca Raton (2000)zbMATHGoogle Scholar
  4. 4.
    Beaulieu, M., Gamache, M.: An enumeration algorithm for solving the fleet management problem in underground mines. Comput. Oper. Res. 33(6), 1606–1624 (2006)CrossRefGoogle Scholar
  5. 5.
    Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve (2006–2016). https://sourceforge.net/projects/lpsolve/
  6. 6.
    Brazil, M., Grossman, P., Lee, D., Rubinstein, J., Thomas, D., Wormald, N.: Decline design in underground mines using constrained path optimisation. Min. Technol. 117(2), 93–99 (2008)CrossRefGoogle Scholar
  7. 7.
    Cox, W., French, T., Reynolds, M., While, L.: A genetic algorithm for truck dispatching in mining. In: 3rd GCAI, vol. 50, pp. 93–106 (2017)Google Scholar
  8. 8.
    Cox, W., While, L., French, T., Reynolds, M.: CEA-TA mine scheduling (2017). https://github.com/wesleycox/CEA-TA-Mine-Scheduling
  9. 9.
    Eshelman, L.J., Schaffer, J.D.: Real coded genetic algorithms and interval-schemata. FOGA 2, 187–202 (1993)Google Scholar
  10. 10.
    Gamache, M., Grimard, R., Cohen, P.: A shortest-path algorithm for solving the fleet management problem in underground mines. EJOR 166(2), 497–506 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gomes, C.P., Selman, B.: Algorithm portfolios. AI 126(1–2), 43–62 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kim, C.W., Tanchoco, J.M.: Conflict-free shortest-time bidirectional AGV routing. IJPR 29(12), 2377–2391 (1991)CrossRefGoogle Scholar
  13. 13.
    Krishnamurthy, N.N., Batta, R., Karwan, M.H.: Developing conflict-free routes for automated guided vehicles. Oper. Res. 41(6), 1077–1090 (1993)CrossRefGoogle Scholar
  14. 14.
    Li, Z.: A methodology for the optimum control of shovel and truck operations in open-pit mining. Min. Sci. Technol. 10(3), 337–340 (1990)CrossRefGoogle Scholar
  15. 15.
    Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Phys. A: Stat. Mech. Appl. 391(6), 2193–2196 (2012)CrossRefGoogle Scholar
  16. 16.
    Luke, S., Sullivan, K., Abidi, F.: Large scale empirical analysis of cooperative coevolution. In: GECCO, pp. 151–152. ACM (2011)Google Scholar
  17. 17.
    Modular Mining Systems: DISPATCH (2017). www.modularmining.com/product/. Accessed 20 Sept 2017
  18. 18.
    Munirathinam, M., Yingling, J.C.: A review of computer-based truck dispatching strategies for surface mining operations. Int. J. Surf. Min., Reclam. Environ. 8(1), 1–15 (1994)CrossRefGoogle Scholar
  19. 19.
    Newman, A.M., Rubio, E., Caro, R., Weintraub, A., Eurek, K.: A review of operations research in mine planning. Interfaces 40(3), 222–245 (2010)CrossRefGoogle Scholar
  20. 20.
    Rupprecht, S.: Mine development-access to deposit. In: 5th International Platinum Conference, pp. 101–121 (2012)Google Scholar
  21. 21.
    Saayman, P., Craig, I., Camisani-Calzolari, F.: Optimization of an autonomous vehicle dispatch system in an underground mine. J. South. Afr. Inst. Min. Metall. 106(2), 77–86 (2006)Google Scholar
  22. 22.
    Tan, S., Ramani, R.V.: Evaluation of computer truck dispatching criteria. In: Proceedings of the SME/AIME Annual Meeting and Exhibition, pp. 192–215 (1992)Google Scholar
  23. 23.
    Upadhyay, S., Askari-Nasab, H.: Truck-shovel allocation optimisation: a goal programming approach. Min. Technol. 125(2), 82–92 (2016)Google Scholar
  24. 24.
    Vagenas, N.: Dispatch control of a fleet of remote-controlled/automatic load-haul-dump vehicles in underground mines. IJPR 29(11), 2347–2363 (1991)CrossRefGoogle Scholar
  25. 25.
    White, J.W., Olson, J.P.: Computer-based dispatching in mines with concurrent operating objectives. Miner. Eng. 38(11) (1986)Google Scholar
  26. 26.
    White, J.W., Olson, J.P., Vohnout, S.I.: On improving truck/shovel productivity in open pit mines. CIM Bull. 86, 43–43 (1993)Google Scholar
  27. 27.
    Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, George Mason University, Virginia (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Wesley Cox
    • 1
  • Tim French
    • 1
  • Mark Reynolds
    • 1
  • Lyndon While
    • 1
  1. 1.Computer Science and Software EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations