Advertisement

A Multi-tree Genetic Programming Representation for Melanoma Detection Using Local and Global Features

  • Qurrat Ul Ain
  • Harith Al-Sahaf
  • Bing Xue
  • Mengjie Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11320)

Abstract

Melanoma is the deadliest type of skin cancer that accounts for nearly 75% of deaths associated with it. However, survival rate is high, if diagnosed at an early stage. This study develops a novel classification approach to melanoma detection using a multi-tree genetic programming (GP) method. Existing approaches have employed various feature extraction methods to extract features from skin cancer images, where these different types of features are used individually for skin cancer image classification. However they remain unable to use all these features together in a meaningful way to achieve performance gains. In this work, Local Binary Pattern is used to extract local information from gray and color images. Moreover, to capture the global information, color variation among the lesion and skin regions, and geometrical border shape features are extracted. Genetic operators such as crossover and mutation are designed accordingly to fit the objectives of our proposed method. The performance of the proposed method is assessed using two skin image datasets and compared with six commonly used classification algorithms as well as the single tree GP method. The results show that the proposed method significantly outperformed all these classification methods. Being interpretable, this method may help dermatologist identify prominent skin image features, specific to a type of skin cancer.

Keywords

Genetic programming Image classification Feature extraction Feature selection Melanoma detection 

References

  1. 1.
    Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for skin cancer detection in dermoscopic images. In: Proceedings of the 2017 Congress on Evolutionary Computation, pp. 2420–2427. IEEE (2017)Google Scholar
  2. 2.
    Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for feature selection and feature construction in skin cancer image classification. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11012, pp. 732–745. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97304-3_56CrossRefGoogle Scholar
  3. 3.
    Al-Sahaf, H., Xue, B., Zhang, M.: A multitree genetic programming representation for automatically evolving texture image descriptors. In: Shi, Y. (ed.) SEAL 2017. LNCS, vol. 10593, pp. 499–511. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68759-9_41CrossRefGoogle Scholar
  4. 4.
    Argenziano, G., Fabbrocini, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archiv. Dermatol. 134(12), 1563–1570 (1998)CrossRefGoogle Scholar
  5. 5.
    Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J.: A color and texture based hierarchical k-NN approach to the classification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Medical Image Analysis. LNCVB, vol. 6, pp. 63–86. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-94-007-5389-1_4CrossRefGoogle Scholar
  6. 6.
    Esteva, A., Kuprel, B., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)CrossRefGoogle Scholar
  7. 7.
    Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16(6), 1239–1252 (2012)CrossRefGoogle Scholar
  8. 8.
    Hall, M., Frank, E., et al.: The WEKA data mining software: an update. SIGKDD Explor. Newslett. 11(1), 10–18 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Koza, J.R., Poli, R.: A genetic programming tutorial (2003)Google Scholar
  10. 10.
    Lee, J.H., Ahn, C.W., An, J.: An approach to self-assembling swarm robots using multitree genetic programming. Sci. World J. 2013, 10 (2013)Google Scholar
  11. 11.
    Lensen, A., Xue, B., Zhang, M.: Generating redundant features with unsupervised multi-tree genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 84–100. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77553-1_6CrossRefGoogle Scholar
  12. 12.
    Luke, S.: Essentials of Metaheuristics, 2nd edn. Lulu, Morrisville (2013). http://cs.gmu.edu/~sean/book/metaheuristics/
  13. 13.
    Maglogiannis, I., Doukas, C.N.: Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans. Inf. Technol. Biomed. 13(5), 721–733 (2009)CrossRefGoogle Scholar
  14. 14.
    Mendonça, T., Ferreira, et al.: PH2-a dermoscopic image database for research and benchmarking. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5437–5440 (2013)Google Scholar
  15. 15.
    Muni, D.P., Pal, N.R., Das, J.: A novel approach to design classifiers using genetic programming. IEEE Trans. Evol. Comput. 8(2), 183–196 (2004)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Oltean, M., Dumitrescu, D.: Multi expression programming. J. Genetic Program. Evol. Mach. (2002). Kluwer, second tour of reviewGoogle Scholar
  18. 18.
    Satheesha, T., Satyanarayana, D., et al.: Melanoma is skin deep: a 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J. Transl. Eng. Health Med. 5, 1–17 (2017)CrossRefGoogle Scholar
  19. 19.
    Stewart, B.W., Wild, C.P., et al.: World cancer report 2014. Health (2017)Google Scholar
  20. 20.
    Stolz, W., Riemann, A., et al.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant-melanoma. Eur. J. Dermatol. 4(7), 521–527 (1994)Google Scholar
  21. 21.
    Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Qurrat Ul Ain
    • 1
  • Harith Al-Sahaf
    • 1
  • Bing Xue
    • 1
  • Mengjie Zhang
    • 1
  1. 1.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations