Variable-Centred Designs

  • Oddbjørn BukveEmail author


Variable-centred designs are often called quantitative designs. Such designs are commonly defined as building on quantitative data and on data from multiple units. Their basic property is, however, the underlying reductionism that decides how we produce and organise data in a variable-centred design. This chapter discusses how theory testing and theory development place different demands on the set-up of a variable-centred inquiry, before ending with an overview of main variants of variable-centred designs. Experimental designs, cross-sectional designs, and time series designs are discussed.


  1. Allen, M. P. (2004). Understanding regression analysis. New York: Springer Science & Business Media.Google Scholar
  2. Clausen, S.-E. (2009). Multivariate analysemetoder for samfunnsvitere : med eksempler i SPSS. Oslo, Norway: Universitetsforl.Google Scholar
  3. Collier, D., & Mahon, J. E. (1993). Conceptual “stretching” revisited: Adapting categories in comparative analysis. The American Political Science Review, 87(4), 845–855. Scholar
  4. Cook, T. D., Campbell, D. T., Fankhauser, G., Reichardt, C. S., McCain, L. J., & McCleary, R. (1979). Quasi-experimentation: Design & analysis issues for field settings. Boston: Houghton Mifflin Co.Google Scholar
  5. Faraway, J. J. (2016). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models (Vol. 124). Boca Raton, FL: CRC press.CrossRefGoogle Scholar
  6. Hjellbrekke, J. (1999). Innføring i korrespondanseanalyse. Bergen-Sandviken, Norway: Fagbokforl.Google Scholar
  7. Kim, J.-O., & Mueller, C. W. (1978). Introduction to factor analysis: What it is and how to do it (Vol. 13). Beverly Hills, CA: Sage.CrossRefGoogle Scholar
  8. Midtbø, T. (2007). Regresjonsanalyse for samfunnsvitere: med eksempler i SPSS. Oslo, Norway: Universitetsforl.Google Scholar
  9. Ringdal, K. (2013). Enhet og mangfold. Samfunnsvitenskapelig forskning og kvantitativ metode. 3. utg. Bergen: Fagbokforlaget.Google Scholar
  10. Roberts, M., & Russo, R. (2014). A student’s guide to analysis of variance. London: Routledge.CrossRefGoogle Scholar
  11. Sartori, G. (1970). Concept misformation in comparative politics. American Political Science Review, 64(04), 1033–1053.CrossRefGoogle Scholar
  12. Schrodt, P. A. (2014). Seven deadly sins of contemporary quantitative political analysis. Journal of Peace Research, 51(2), 287–300. Scholar
  13. Simon, H. (1954). Spurious correlation: A causal interpretation*. Journal of the American Statistical Association, 49(267), 467–479. Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Western Norway University of Applied SciencesSogndalNorway

Personalised recommendations