Identification of the Chaînes Opératoires

  • Valentine Roux


Chapter 3 follows on as a logical suite to Chap. 2 by explicating the diagnostic traits that allow for the identification of the chaînes opératoires with the practical aim of training archaeologists in their reading of the archaeological material. It presents the significant surface features and microfabrics highlighted during the course of experiments and ethnographic observations. Whether they are from the specialized literature or new experiments, the description of these traces is carried out using new analytical grids. These are based on a detailed understanding of the mechanisms underlying the transformation of clay materials exposed to different constraints. These grids were developed in collaboration with the field of geoscience. At the end of this chapter, it becomes possible to analyze the ceramic material using different scales of observation and to identify the significant surface features and microstructures of the main techniques used. This approach paves the way for future experiments in order to improve our understanding of the singular traces present on any archaeological material.


Manufacturing techniques Diagnostic traits Surface features Microfabrics Thin sections X-ray analysis Experimental archaeology Field experiment Clay deformation 


  1. Baba, M., & Saito, M. (2004). Experimental studies on the firing methods of black-topped pottery in predynastic Egypt. In S. Hendrickx & B. Adams (Eds.), Egypt at its origins: Studies in memory of Barbara Adams: Proceedings of the International Conference “Origin of the State, Predynastic and Early Dynastic Egypt,” Krakow, 28 August – 1st September 2002 (pp. 575–589). Leuven: Peeters Publishers.Google Scholar
  2. Balfet, H. (1966). La céramique comme document archéologique. Bulletin de la Société Préhistorique Française, 63, 279–310.CrossRefGoogle Scholar
  3. Balfet, H., Fauvet-Berthelot, M.-F., & Monzon, S. (1983). Pour la normalisation de la description des poteries. Paris: Editions du CNRS.Google Scholar
  4. Barham, A. J. (1995). Methodological approaches to archaeological context recording: X-radiography as an example of a supportive recording, assessment and interpretive technique. In A. J. Barham & R. I. MacPhail (Eds.), Archaeological sediments and soils: Analysis, interpretation and management (pp. 145–182). London: Institute of Archaeology, UCL.Google Scholar
  5. Berg, I. (2008). Looking through pots: recent advances in ceramic X-radiography. Journal of Archaeological Science, 35, 1177–1188.CrossRefGoogle Scholar
  6. Bishop, R. L., Rands, R. L., & Holley, G. R. (1982). Ceramic compositional analysis in archaeological perspective. Advances in Archaeological Method and Theory, 5, 275–330.CrossRefGoogle Scholar
  7. Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., & Tursina, T. (1985). Handbook for soil thin section description. Wolverhampton: Waine Research.Google Scholar
  8. Butler, S. (1992). X-radiography of archaeological soil and sediment profiles. Journal of Archaeological Science, 19, 151–161.CrossRefGoogle Scholar
  9. Caneva, I. (1987). Pottery decoration in prehistoric Sahara and upper Nile: a new perspective. In B. E. Barich (Ed.), Archaeology and the environment in the Libyan Sahara. The excavations in the Tadrat Acacus, 1978–1983 (pp. 231–254). BAR International Series 368. Oxford: Archaeopress.Google Scholar
  10. Carr, C. (1990). Advances in ceramic radiography and analysis: applications and potentials. Journal of Archaeological Science, 17, 13–34.CrossRefGoogle Scholar
  11. Carr, C., & Riddick, E. B., Jr. (1990). Advances in ceramic radiography and analysis: laboratory methods. Journal of Archaeological Science, 17, 35–66.CrossRefGoogle Scholar
  12. Courty, M.-A., Goldberg, P., & Macphail, R. (1989). Soils and Micromorphology in Archaeology. In Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.Google Scholar
  13. Courty, M.-A., & Roux, V. (1995). Identification of wheel throwing on the basis of ceramic surface features and microfabrics. Journal of Archaeological Science, 22, 17–50.CrossRefGoogle Scholar
  14. Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621–634.CrossRefGoogle Scholar
  15. Denham, T., Sniderman, K., Saunders, K. M., Winsborough, B., & Pierret, A. (2009). Contiguous multi-proxy analyses (X-radiography, diatom, pollen, and microcharcoal) of Holocene archaeological features at Kuk Swamp, Upper Wahgi Valley. Papua New Guinea. Geoarchaeology, 24, 715–742.CrossRefGoogle Scholar
  16. van Doosselaere, B. (2011). Poterie et histoire au temps des grands empires ouest africains. Etude technologique de l’assemblage céramique de Koumbi Saleh (Mauritanie 6e-17e siècles). Paris: Université de Paris I, Panthéon-Sorbonne. PhD.Google Scholar
  17. Dugmore, A. J., & Newton, A. J. (1992). Thin tephra layers in peat revealed by X-radiography. Journal of Archaeological Science, 19, 163–170.CrossRefGoogle Scholar
  18. Duminuco, P., Messiga, B., & Riccardi, M. P. (1998). Firing process of natural clays. Some microtextures and related phase compositions. Thermochimica Acta, 321, 185–190.CrossRefGoogle Scholar
  19. Franken, H. J. (1970). A new approach to the study of pottery from excavations. Archeologia, 21, 1–8.Google Scholar
  20. Franken, H. J. (1978). The analysis of ancient methods of potmaking. Acta Praehistorica et Archaeologica Berlin, 9–10, 77–78.Google Scholar
  21. Gallin, A. (2013). CerAfIm. (accessed 14/12/2018).Google Scholar
  22. Gelbert, A. (1994). Tour et tournette en Espagne : recherche de macrotraces significatives des différentes techniques et méthodes de façonnage. In J. Courtin & D. Binder (Eds.), Terre cuite et Société. La céramique, document technique, économique, culturel (XIVe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes) (pp. 59–74). Juan-les-Pins: Editions APDCA.Google Scholar
  23. Gelbert, A. (2003a). Traditions céramiques et emprunts techniques dans la vallée du fleuve Sénégal. Ceramic traditions and technical borrowings in the Senegal River Valley. English/French extracts at Paris: Editions de la Maison des sciences de l’homme, Editions Epistèmes.
  24. Gelbert, A. (2003b). Ceramic surface features and fashioning techniques and methods. The Arkeotek Journal ( ) Republished articles. Extract from Ceramic Traditions and Technical Borrowings in the Senegal River Valley, Éditions de La Maison Des Sciences de l’homme, Éditions Epistèmes, Paris, Bilingual CD.
  25. van Gijn, A., & Lammers-Keijsers, Y. (2010). Toolkits for ceramic production: informal tools and the importance of high power use-wear analysis. Bulletin de la Société Préhistorique Française, 107, 755–762.CrossRefGoogle Scholar
  26. Giorgetti, G., Gliozzo, E., & Memmi, I. (2004). Tuscan black glosses A mineralogical characterization by high resolution techniques. European Journal of Mineralogy, 16, 493–503.CrossRefGoogle Scholar
  27. Gliozzo, E., Kirkman, I. W., Pantos, E., & Turbanti, I. M. (2004). Black gloss pottery: production sites and technology in northern Etruria, Part II: gloss technology. Archaeometry, 46, 227–246.CrossRefGoogle Scholar
  28. Greene, A., & Hartley, C. (2007). From analog to digital: protocols and program for a systematic digital radiography of archaeological pottery. In Eur. Meet. Ancient Ceramics (pp. 5–14). Budapest: Hungarian National Museum.Google Scholar
  29. Hamblin, W. K. (1962). X-ray radiography in the study of structures in homogeneous sediments. Journal of Sedimentary Research, 32, 201–210.Google Scholar
  30. Haour, A., Manning, K., Arazi, N., Guèye, S., Keita, D., Livingstone-smith, A., MacDonald, K., Mayor, A., McIntosh, S., & Vernet, R. (Eds.). (2010). African pottery roulettes past and present: Techniques, identification and distribution. Oxford: Oxbow Books.Google Scholar
  31. Huysecom, E. (1994). Identification technique des céramiques africaines. In D. Binder & J. Courtin (Eds.), Terre cuite et Société. La céramique, document technique, économique, culturel (XIVe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes 14) (pp. 31–44). Juan-les-Pins: Editions APDCA.Google Scholar
  32. Kahl, W.-A., & Ramminger, B. (2012). Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: a pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. Journal of Archaeological Science, 39, 2206–2219.CrossRefGoogle Scholar
  33. Krinitzsky, E. L. (1970). Radiography in the earth sciences and soil mechanics. New York-London: Plenum Press.CrossRefGoogle Scholar
  34. Lepère, C. (2014). Experimental and traceological approach for a technical interpretation of ceramic polished surfaces. Journal of Archaeological Science, 46, 144–155.CrossRefGoogle Scholar
  35. Livingstone Smith, A. (2001). Chaîne opératoire de la poterie : Références ethnographiques, analyses et reconstitution. Bruxelles: Université Libre de Bruxelles. PhD.Google Scholar
  36. Livingstone Smith, A., Gosselain, O., Mayor, A., & Guèye, S. (2010). Roulettes modernes d’Afrique sub-saharienne. In A. Haour, K. Manning, N. Arazi, O. Gosselain, N. S. Guèye, D. Keita, A. Livingstone-smith, et al. (Eds.), African pottery roulettes past and present.: Techniques, identification and distribution (pp. 35–114). Oxford: Oxbow Books.Google Scholar
  37. Livingstone Smith, A. (2010). Méthode d’identification des décors roulés. In A. Haour, K. Manning, N. Arazi, O. Gosselain, N. S. Guèye, D. Keita, A. Livingstone-smith, et al. (Eds.), African pottery roulettes past and present: Techniques, identification and distribution (pp. 117–130). Oxford: Oxbow Books.Google Scholar
  38. Livingstone-Smith, A., Bosquet, D., & Martineau, R., Eds. (2005). Pottery manufacturing processes: Reconstitution and interpretation. Acts of the XIVth Congress UISPP, University of Liège, Belgium, 2–8 September. Oxford: Archaeopress.Google Scholar
  39. Maigrot, Y. (2010). Étude comparative de deux séries en os impliqués dans la production céramique néolithique du Jura : Clairvaux XIV (Néolithique moyen) et Chalain 4 (Néolithique final). Bulletin de la Société Préhistorique Française, 107, 737–753.CrossRefGoogle Scholar
  40. Manen, C., & Salanova, L. (2010). Les impressions de coquilles marines à front denté dans les décors céramiques néolithiques. In C. Manen, F. Convertini, & D. Binder (Eds.), Premières sociétés paysannes de Méditerranée occidentale : structure des premières productions céramiques (Mémoires de La Société Préhistorique Française 51) (pp. 57–64). Paris: Société Préhistorique Française.Google Scholar
  41. Maniatis, Y., & Tite, M. S. (1981). Technological examination of Neolithic-Bronze Age pottery from central and southeast Europe and from the Near East. Journal of Archaeological Science, 8, 59–76.CrossRefGoogle Scholar
  42. Martineau, R. (2000). Poterie, techniques et sociétés. Études analytiques et expérimentales à Chalain et Clairvaux (Jura), entre 3200 et 2900 av. J.-C. Dijon: Université de Franche-Comté. PhD.Google Scholar
  43. Martineau, R., & Pétrequin, P. (2000). La Cuisson des poteries néolithiques de Chalain (Jura), approche expérimentale et analyse archéologique. In P. Pétrequin, P. Fluzin, J. Thiriot, & P. Benoit (Eds.), Arts du feu et productions artisanales (Actes des XXe rencontres d’Antibes) (pp. 337–358). Antibes: APDCA.Google Scholar
  44. Meunier, K. (2012). Styles céramiques et néolithisation dans le sud-est du Bassin parisien: une évolution Rubané, Villeneuve-Saint-Germain. Paris: CNRS éditions, INRAP.Google Scholar
  45. Moropoulou, A., Bakolas, A., & Bisbikou, K. (1995). Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochimica Acta, 269, 743–753.CrossRefGoogle Scholar
  46. Pierret, A. (2001). Analyse technologique des céramiques archéologiques : développements méthodologiques pour l’identification des techniques de façonnage. Un exemple d’application : le matériel du village des Arènes à Levroux (Indre). Thèse à La Carte. Villeneuve d’Ascq: Presses Universitaires du Septentrion.Google Scholar
  47. Pierret, A., & Moran, C. J. (1996). Quantification of orientation of pore patterns in X-ray images of deformed clay. Microscopy Microanalysis Microstructures, 7, 421–432.CrossRefGoogle Scholar
  48. Pierret, A., Moran, C. J., & Bresson, L. M. (1996). Calibration and visualization of wall-thickness and porosity distributions of Ceramics using X-radiography and image processing. Journal of Archaeological Science, 23, 419–428.CrossRefGoogle Scholar
  49. Pomédio, C. (2010). La céramique du Bajío, Guanajuato, Mexique : étude techno-stylistique de la céramique incisée du Cerro Barajas. Paris: Université de Paris I, Panthéon-Sorbonne. PhD.Google Scholar
  50. Rice, P. M. (1987). Pottery analysis. A sourcebook. Chicago/London: The University Chicago Press.Google Scholar
  51. Röntgen, W. C. (1896). On a new kind of rays. Science, 3, 227–231.CrossRefGoogle Scholar
  52. Rosselló, J. G., & Trias, M. C. (2013). Making Pots: el modelado de la cerámica a mano y su potencial interpretativo. BAR International Series 2540. Oxford: Archaeopress.Google Scholar
  53. Roux, V. (2017). Smoothing and clay coating: reference collections for interpreting southern Levant Chalcolithic finishing techniques and surface treatments. The Arkeotek Journal.
  54. Roux, V., & Courty, M.-A. (1998). Identification of wheel-fashioning methods: technological analysis of 4th-3rd millennium BC oriental ceramics. Journal of Archaeological Science, 25, 747–763.CrossRefGoogle Scholar
  55. Roux, V., & Thalmann, J.-P. (2016). Évolution technologique et morpho-stylistique des assemblages céramiques de Tell Arqa (Liban, 3e millénaire av. J.-C.) : stabilité sociologique et changements culturels. Paléorient, 42, 95–121.Google Scholar
  56. Rye, O. S. (1977). Pottery manufacturing techniques : X-Ray studies. Archaeometry, 19, 205–211.CrossRefGoogle Scholar
  57. Rye, O. S. (1981). Pottery Technology. Principles and Reconstruction (Manuals on Archaeology 4). Washington, DC: Taraxacum Press.Google Scholar
  58. Shepard, A. O. 1965. Ceramics for the Archaeologist. Washington, D.C.: Carnegie Institution of Washington.Google Scholar
  59. Shoval, S. (1994). The firing temperature of a Persian-period pottery kiln at Tel Michal, Israel, estimated from the composition of its pottery. Journal of Thermal Analysis and Calorimetry, 42, 175–185.CrossRefGoogle Scholar
  60. Thalmann, J.-P. (2006). Tell Arqa, 1. Les niveaux de l’âge du Bronze. Bibliothèque archéologique et historique 177. Beyrouth: Institut français du Proche-Orient.Google Scholar
  61. Thér, R., & Gregor, M. (2011). Experimental reconstruction of the pottery firing process of Late Bronze Age pottery from North-Eastern Bohemia. In S. Scarcella (Ed.), Archaeological ceramics: A review of current research (pp. 128–142). BAR International Series 2193. Oxford: Archaeopress.Google Scholar
  62. Tite, M. S. (1969). Determination of the firing temperature of ancient ceramics by measurement of thermal expansion: a reassessment. Archaeometry, 11, 131–143.CrossRefGoogle Scholar
  63. Tite, M. S. (1999). Pottery production, distribution, and consumption—the contribution of the physical sciences. Journal of Archaeological Method and Theory, 6, 181–233.CrossRefGoogle Scholar
  64. Tite, M. S., Bimson, M., & Freestone, I. C. (1982). An examination of the high gloss surface finishes on Greek Attic and Roman Samian wares. Archaeometry, 24, 117–126.CrossRefGoogle Scholar
  65. Tite, M. S., Freestone, I., Mason, R., Molera, J., Vendrell-Saz, M., & Wood, N. (1998). Lead glazes in antiquity – Methods of production and reasons for use. Archaeometry, 40, 241–260.CrossRefGoogle Scholar
  66. Tite, M. S. (1995). Firing temperature determination–how and why? In The aim of laboratory analyses of ceramics in archaeology, April 7–9, 1995 in Lund, Sweden (pp. 37–42). Stockholm: Kungliga vitterhets-, historie-och antikvitets akademien.Google Scholar
  67. Titterington, P. F. (1935). Certain bluff mounds of western Jersey County, Illinois. American Antiquity, 1, 6–46.CrossRefGoogle Scholar
  68. Torchy, L., & Gassin, B. (2010). Le travail de la poterie en contexte chasséen : des outils en silex pour la production céramique ? Bulletin de la Société Préhistorique Française, 107, 725–735.CrossRefGoogle Scholar
  69. van der Leeuw, S. (1977). Towards a study of the economics of pottery making. In Ex Horreo, 4:68–76. Amsterdam: University of Amsterdam.Google Scholar
  70. Vandiver, P., Ellingson, W., Robinson, T., Lobick, J. J., & Séguin, F. H. (1991). New applications of X-radiographic imaging technologies for archaeological ceramics. Archeomaterials, 5, 185–207.Google Scholar
  71. Wagner, U., Gebhard, R., Murad, E., Riederer, J., Shimada, I., & Wagner, F. E. (1994). Kiln firing at Batan Grande: today and in formative times. In Archaeometry of Pre-Columbian Sites and Artifacts: Proceedings of a Symposium Organized by the UCLA Institute of Archaeology (pp. 67–84). Los Angeles: J. Paul Gutty Trust.Google Scholar
  72. Zapotocka, M. (1978). Le décor de la culture néolithique de la Céramique Pointillée: technique, terminologie et qualité de la documentation. Archeologické Rozhledy Praha, 30, 504–534.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentine Roux
    • 1
  1. 1.Préhistoire & Technologie, UMR 7055French National Centre for Scientific ResearchNanterreFrance

Personalised recommendations