Artificial Cognitive Architecture. Design and Implementation

  • Gerardo BeruvidesEmail author
Part of the Springer Theses book series (Springer Theses)


Nowadays, even though artificial cognitive architectures represent an emerging field of research, there are many constraints on the broad application of artificial cognitive control at an industrial level and very few systematic approaches truly inspired in biological processes, from the perspective of control engineering. One way to address the bio inspiration is the emulation of human socio-cognitive skills and to formalize this approach from the viewpoint of control engineering facing actual industrial problems.


  1. 1.
    Hurley S (2008) The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behav Brain Sci 31(1):1–22CrossRefGoogle Scholar
  2. 2.
    Sanz R, Hernández C, Hernando A, Gómez J, Bermejo J (2009) Grounding robot autonomy in emotion and self-awareness. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) vol 5744 LNCS, pp 23–43CrossRefGoogle Scholar
  3. 3.
    Felix RA, Sanchez EN, Loukianov AG (2009) Neural block control for synchronous generators. Eng Appl Artif Intell 22(8):1159–1166CrossRefGoogle Scholar
  4. 4.
    Sánchez Boza A, Guerra RH, Gajate A (2011) Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach. Eng Appl Artif Intell 24(2):209–219CrossRefGoogle Scholar
  5. 5.
    Makino T (2008) Failure, instead of inhibition, should be monitored for the distinction of self/other and actual/possible actions. Behav Brain Sci Note 31(1):32–33Google Scholar
  6. 6.
    Llinás RR, Roy S (2009) The ‘prediction imperative’ as the basis for self-awareness. Philos Trans R Soc Lond B: Biol Sci 364(1521):1301–1307CrossRefGoogle Scholar
  7. 7.
    Carpendale JIM, Lewis C (2008) Mirroring cannot account for understanding action. Behav Brain Sci Note 31(1):23–24Google Scholar
  8. 8.
    Imamizu H, Kawato M (2009) Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychol Res 73(4):527–544CrossRefGoogle Scholar
  9. 9.
    Peterburs J, Desmond JE (2016) The role of the human cerebellum in performance monitoring. Curr Opin Neurobiol 40:38–44CrossRefGoogle Scholar
  10. 10.
    Ishikawa T, Tomatsu S, Izawa J, Kakei S (2016) The cerebro-cerebellum: could it be loci of forward models? Neurosci Res 104:72–79CrossRefGoogle Scholar
  11. 11.
    Precup R-E, Angelov P, Costa BSJ, Sayed-Mouchaweh M (2015) An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput Ind 74:75–94CrossRefGoogle Scholar
  12. 12.
    Chungoora N et al (2013) A model-driven ontology approach for manufacturing system interoperability and knowledge sharing. Comput Ind 64(4):392–401CrossRefGoogle Scholar
  13. 13.
    Kit D, Ballard DH, Sullivan B, Rothkopf CA (2013) A hierarchical modular architecture for embodied cognition. Multisens Res Article 26(1–2):177–204Google Scholar
  14. 14.
    Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Int Res 4(1):237–285Google Scholar
  15. 15.
    Szepesvári C (2010) Algorithms for reinforcement learning. Synth Lect Artif Intell Mach Learn 4(1):1–103zbMATHCrossRefGoogle Scholar
  16. 16.
    Boubertakh H, Tadjine M, Glorennec P-Y, Labiod S (2010) Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans 49(4):543–551CrossRefGoogle Scholar
  17. 17.
    Haber RE, Juanes C, del Toro R, Beruvides G (2015) Artificial cognitive control with self-x capabilities: a case study of a micro-manufacturing process. Comput IndGoogle Scholar
  18. 18.
    Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci 179(12):1944–1959MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang J, Zhuang J, Du H, Wang Sa (2009) Self-organizing genetic algorithm based tuning of PID controllers. Inf Sci 179(7):1007–1018zbMATHCrossRefGoogle Scholar
  20. 20.
    Chen T, Tang K, Chen G, Yao X (2010) Analysis of computational time of simple estimation of distribution algorithms (in English). IEEE Trans Evol Comput 14(1):1–22CrossRefGoogle Scholar
  21. 21.
    Rubinstein R (2008) Semi-iterative minimum cross-entropy algorithms for rare-events, counting, combinatorial and integer programming (in English). Methodol Comput Appl Probab 10(2):121–178MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Fatemi M, Haykin S (2014) Cognitive control: theory and application. Access IEEE 2:698–710CrossRefGoogle Scholar
  23. 23.
    Juanes C (2014) Diseño e implementación de estrategias self-x en una arquitectura de control cognitivo artificial. Grado en ingeniería informática y en matemática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, EspañaGoogle Scholar
  24. 24.
    Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304–313CrossRefGoogle Scholar
  25. 25.
    jFuzzyLogic Fuzzy Control Language (2017). Available:
  26. 26.
    COGNETCON packages function repository (2016) Available:
  27. 27.
    Park K, Han Y, Hur Th, Lee Y-K (2015) Correlated subgraph search for multiple query graphs in graph streams. In: Presented at the proceedings of the 9th international conference on ubiquitous information management and communication, Bali, IndonesiaGoogle Scholar
  28. 28.
    Schmidt DC, Levine DL, Mungee S (1998) Quality of services in distributed systems the design of the TAO real-time object request broker. Comput Commun 21(4):294–324CrossRefGoogle Scholar
  29. 29.
    Henning M (2009) Choosing middleware: why performance and scalability do (and do not) MatterGoogle Scholar
  30. 30.
    Koning JF, Heemskerk CJM, Schoen P, Smedinga D, Boode AH, Hamilton DT (2013) Evaluating ITER remote handling middleware concepts. Fusion Eng Des 88(9–10):2146–2150CrossRefGoogle Scholar
  31. 31.
    Unified Modeling Language (2016) Available:
  32. 32.
    Real Time Specification for Java (2016) Available:
  33. 33.
    S.W.a.I. Generator (2016) Available:
  34. 34.
  35. 35.
    Beruvides G, Quiza R, Toro R, Castaño F, Haber RE (2014) Correlation of the holes quality with the force signals in a microdrilling process of a sintered tungsten-copper alloy. Int J Precis Eng Manufact J Article 15(9):1801–1808CrossRefGoogle Scholar
  36. 36.
    Beruvides G, Juanes C, Castano F, Haber RE (2015) A self-learning strategy for artificial cognitive control systems. In: IEEE International conference on industrial informatics (INDIN), pp 1180–1185Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Automation and Robotic (CAR-CSIC)MadridSpain

Personalised recommendations