Advertisement

Sjögren’s Syndrome

  • Laëtitia Le Pottier
  • Kahina Amrouche
  • Amandine Charras
  • Anne Bordron
  • Jacques-Olivier PersEmail author
Chapter
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by sicca symptoms and a broad variety of systemic clinical manifestations. Indeed, even though keratoconjunctivitis sicca, resulting from the involvement of lacrimal glands, and xerostomia, resulting from the involvement of salivary glands, are usually prominent, pSS presents as a multifaceted and systemic condition with a broad variety of clinical manifestations. The spectrum of pSS extends from an organ-specific autoimmune disorder (referred to as an autoimmune exocrinopathy) to a systemic process and in addition to an increased risk of non-Hodgkin’s lymphoma. More than 50 years ago, genetic involvement was suggested in the etiology of pSS. The idea that genetic and epigenetic factors contribute to the etiology of systemic autoimmune diseases such as pSS is supported by familial autoimmunity and poly-autoimmunity. Most of the genes associated with susceptibility to pSS have been identified because the proteins involved have been previously associated with the pathogenesis of pSS or because the genes had already been associated with another autoimmune disease such as SLE or RA. Consequently, in this chapter, we will first focus on the immunopathology of pSS in order to better understand the genetic and epigenetic alterations described in the disease. The last section will be dedicated to genetic alterations in pSS related to lymphoma.

Keywords

Sjögren’s syndrome Genetics Epigenetics HLA associations BAFF Lymphoma DNA methylation 

References

  1. 1.
    Cornec D, Chiche L. Is primary Sjogren’s syndrome an orphan disease? A critical appraisal of prevalence studies in Europe. Ann Rheum Dis. 2015;74(3):e25.  https://doi.org/10.1136/annrheumdis-2014-206860.CrossRefPubMedGoogle Scholar
  2. 2.
    Binard A, Le Pottier L, Devauchelle-Pensec V, Saraux A, Youinou P, Pers JO. Is the blood B-cell subset profile diagnostic for Sjogren syndrome? Ann Rheum Dis. 2009;68(9):1447–52.  https://doi.org/10.1136/ard.2008.096172.CrossRefPubMedGoogle Scholar
  3. 3.
    Voulgarelis M, Dafni UG, Isenberg DA, Moutsopoulos HM. Malignant lymphoma in primary Sjogren’s syndrome: a multicenter, retrospective, clinical study by the European Concerted Action on Sjogren’s syndrome. Arthritis Rheum. 1999;42(8):1765–72.  https://doi.org/10.1002/1529-0131(199908)42:8<1765::AID-ANR28>3.0.CO;2-V.CrossRefPubMedGoogle Scholar
  4. 4.
    Gayral L, Gayral J. A familial strain of 11 cases of the Marinesco-Sjogren syndrome. J Genet Hum. 1966;15(1):63–9.PubMedGoogle Scholar
  5. 5.
    Cardenas-Roldan J, Rojas-Villarraga A, Anaya JM. How do autoimmune diseases cluster in families? A systematic review and meta-analysis. BMC Med. 2013;11:73.  https://doi.org/10.1186/1741-7015-11-73.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Longhi BS, Appenzeller S, Centeville M, Gusmao RJ, Marini R. Primary Sjogren’s syndrome in children: is a family approach indicated? Clinics (Sao Paulo). 2011;66(11):1991–3.CrossRefGoogle Scholar
  7. 7.
    Kuo CF, Grainge MJ, Valdes AM, See LC, Luo SF, Yu KH, et al. Familial risk of Sjogren’s syndrome and co-aggregation of autoimmune diseases in affected families: a Nationwide population study. Arthritis Rheumatol. 2015;67(7):1904–12.  https://doi.org/10.1002/art.39127.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjogren’s syndrome. J Autoimmun. 2010;34(4):400–7.  https://doi.org/10.1016/j.jaut.2009.10.004.CrossRefPubMedGoogle Scholar
  9. 9.
    Varin MM, Guerrier T, Devauchelle-Pensec V, Jamin C, Youinou P, Pers JO. In Sjogren’s syndrome, B lymphocytes induce epithelial cells of salivary glands into apoptosis through protein kinase C delta activation. Autoimmun Rev. 2012;11(4):252–8.  https://doi.org/10.1016/j.autrev.2011.10.005.CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng L, Zhang Z, Yu C, Yang C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjogren’s syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(6):844–50.  https://doi.org/10.1016/j.tripleo.2010.01.006.CrossRefPubMedGoogle Scholar
  11. 11.
    Konsta OD, Thabet Y, Le Dantec C, Brooks WH, Tzioufas AG, Pers JO, et al. The contribution of epigenetics in Sjogren’s syndrome. Front Genet. 2014;5:71.  https://doi.org/10.3389/fgene.2014.00071.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Thabet Y, Le Dantec C, Ghedira I, Devauchelle V, Cornec D, Pers JO, et al. Epigenetic dysregulation in salivary glands from patients with primary Sjogren’s syndrome may be ascribed to infiltrating B cells. J Autoimmun. 2013;41:175–81.  https://doi.org/10.1016/j.jaut.2013.02.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Hamm-Alvarez SF, Janga SR, Edman MC, Madrigal S, Shah M, Frousiakis SE, et al. Tear cathepsin S as a candidate biomarker for Sjogren’s syndrome. Arthritis Rheumatol. 2014;66(7):1872–81.  https://doi.org/10.1002/art.38633.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nocturne G, Seror R, Fogel O, Belkhir R, Boudaoud S, Saraux A, et al. CXCL13 and CCL11 serum levels and lymphoma and disease activity in primary Sjogren syndrome. Arthritis Rheumatol. 2015;67(12):3226–33.  https://doi.org/10.1002/art.39315.CrossRefPubMedGoogle Scholar
  15. 15.
    Brkic Z, Versnel MA. Type I IFN signature in primary Sjogren’s syndrome patients. Expert Rev Clin Immunol. 2014;10(4):457–67.  https://doi.org/10.1586/1744666X.2014.876364.CrossRefPubMedGoogle Scholar
  16. 16.
    Ittah M, Miceli-Richard C, Gottenberg JE, Sellam J, Eid P, Lebon P, et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol. 2008;38(4):1058–64.  https://doi.org/10.1002/eji.200738013.CrossRefPubMedGoogle Scholar
  17. 17.
    Quartuccio L, Salvin S, Fabris M, Maset M, Pontarini E, Isola M, et al. BLyS upregulation in Sjogren’s syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands. Rheumatology (Oxford). 2013;52(2):276–81.  https://doi.org/10.1093/rheumatology/kes180.CrossRefGoogle Scholar
  18. 18.
    Le Pottier L, Devauchelle V, Fautrel A, Daridon C, Saraux A, Youinou P, et al. Ectopic germinal centers are rare in Sjogren’s syndrome salivary glands and do not exclude autoreactive B cells. J Immunol. 2009;182(6):3540–7.  https://doi.org/10.4049/jimmunol.0803588.CrossRefPubMedGoogle Scholar
  19. 19.
    Haacke EA, van der Vegt B, Vissink A, Spijkervet FKL, Bootsma H, Kroese FGM. Germinal centres in diagnostic labial gland biopsies of patients with primary Sjogren’s syndrome are not predictive for parotid MALT lymphoma development. Ann Rheum Dis. 2017;76(10):1781–4.  https://doi.org/10.1136/annrheumdis-2017-211290.CrossRefPubMedGoogle Scholar
  20. 20.
    Goodnow CC, Vinuesa CG, Randall KL, Mackay F, Brink R. Control systems and decision making for antibody production. Nat Immunol. 2010;11(8):681–8.  https://doi.org/10.1038/ni.1900.CrossRefPubMedGoogle Scholar
  21. 21.
    Szabo K, Papp G, Barath S, Gyimesi E, Szanto A, Zeher M. Follicular helper T cells may play an important role in the severity of primary Sjogren’s syndrome. Clin Immunol. 2013;147(2):95–104.  https://doi.org/10.1016/j.clim.2013.02.024.CrossRefPubMedGoogle Scholar
  22. 22.
    Barone F, Nayar S, Campos J, Cloake T, Withers DR, Toellner KM, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A. 2015;112(35):11024–9.  https://doi.org/10.1073/pnas.1503315112.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, Moutsopoulos HM. Foxp3+ T-regulatory cells in Sjogren’s syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am J Pathol. 2008;173(5):1389–96.  https://doi.org/10.2353/ajpath.2008.080246.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren's syndrome: findings in humans and mice. Arthritis Rheum. 2008;58(3):734–43.  https://doi.org/10.1002/art.23214.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lemoine S, Morva A, Youinou P, Jamin C. Regulatory B cells in autoimmune diseases: how do they work? Ann N Y Acad Sci. 2009;1173:260–7.  https://doi.org/10.1111/j.1749-6632.2009.04651.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Nouel A, Pochard P, Simon Q, Segalen I, Le Meur Y, Pers JO, et al. B-cells induce regulatory T cells through TGF-beta/IDO production in A CTLA-4 dependent manner. J Autoimmun. 2015;59:53–60.  https://doi.org/10.1016/j.jaut.2015.02.004.CrossRefPubMedGoogle Scholar
  27. 27.
    Devauchelle-Pensec V, Mariette X, Jousse-Joulin S, Berthelot JM, Perdriger A, Puechal X, et al. Treatment of primary Sjogren syndrome with rituximab: a randomized trial. Ann Intern Med. 2014;160(4):233–42.  https://doi.org/10.7326/M13-1085.CrossRefPubMedGoogle Scholar
  28. 28.
    Nezos A, Papageorgiou A, Fragoulis G, Ioakeimidis D, Koutsilieris M, Tzioufas AG, et al. B-cell activating factor genetic variants in lymphomagenesis associated with primary Sjogren’s syndrome. J Autoimmun. 2014;51:89–98.  https://doi.org/10.1016/j.jaut.2013.04.005.CrossRefPubMedGoogle Scholar
  29. 29.
    Tobon GJ, Renaudineau Y, Hillion S, Cornec D, Devauchelle-Pensec V, Youinou P, et al. The Fms-like tyrosine kinase 3 ligand, a mediator of B cell survival, is also a marker of lymphoma in primary Sjogren’s syndrome. Arthritis Rheum. 2010;62(11):3447–56.  https://doi.org/10.1002/art.27611.CrossRefPubMedGoogle Scholar
  30. 30.
    Solans-Laque R, Lopez-Hernandez A, Bosch-Gil JA, Palacios A, Campillo M, Vilardell-Tarres M. Risk, predictors, and clinical characteristics of lymphoma development in primary Sjogren’s syndrome. Semin Arthritis Rheum. 2011;41(3):415–23.  https://doi.org/10.1016/j.semarthrit.2011.04.006.CrossRefPubMedGoogle Scholar
  31. 31.
    Nishishinya MB, Pereda CA, Munoz-Fernandez S, Pego-Reigosa JM, Rua-Figueroa I, Andreu JL, et al. Identification of lymphoma predictors in patients with primary Sjogren’s syndrome: a systematic literature review and meta-analysis. Rheumatol Int. 2015;35(1):17–26.  https://doi.org/10.1007/s00296-014-3051-x.CrossRefPubMedGoogle Scholar
  32. 32.
    Kauppi L, Stumpf MP, Jeffreys AJ. Localized breakdown in linkage disequilibrium does not always predict sperm crossover hot spots in the human MHC class II region. Genomics. 2005;86(1):13–24.  https://doi.org/10.1016/j.ygeno.2005.03.011.CrossRefPubMedGoogle Scholar
  33. 33.
    Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–43.  https://doi.org/10.1038/ng.2756.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gershwin ME, Terasaki I, Graw R, Chused TM. Increased frequency of HL-A8 in Sjogren’s syndrome. Tissue Antigens. 1975;6(5):342–6.PubMedGoogle Scholar
  35. 35.
    Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18(1):76.  https://doi.org/10.1186/s13059-017-1207-1.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lessard CJ, Li H, Adrianto I, Ice JA, Rasmussen A, Grundahl KM, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren’s syndrome. Nat Genet. 2013;45(11):1284–92.  https://doi.org/10.1038/ng.2792.CrossRefPubMedGoogle Scholar
  37. 37.
    Li Y, Zhang K, Chen H, Sun F, Xu J, Wu Z, et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjogren’s syndrome at 7q11.23. Nat Genet. 2013;45(11):1361–5.  https://doi.org/10.1038/ng.2779.CrossRefGoogle Scholar
  38. 38.
    Nakken B, Jonsson R, Bolstad AI. Polymorphisms of the Ro52 gene associated with anti-Ro 52-kd autoantibodies in patients with primary Sjogren’s syndrome. Arthritis Rheum. 2001;44(3):638–46.  https://doi.org/10.1002/1529-0131(200103)44:3<638::AID-ANR112>3.0.CO;2-J.CrossRefPubMedGoogle Scholar
  39. 39.
    Gottenberg JE, Busson M, Loiseau P, Cohen-Solal J, Lepage V, Charron D, et al. In primary Sjogren’s syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response. Arthritis Rheum. 2003;48(8):2240–5.  https://doi.org/10.1002/art.11103.CrossRefPubMedGoogle Scholar
  40. 40.
    Song IW, Chen HC, Lin YF, Yang JH, Chang CC, Chou CT, et al. Identification of susceptibility gene associated with female primary Sjogren’s syndrome in Han Chinese by genome-wide association study. Hum Genet. 2016;135(11):1287–94.  https://doi.org/10.1007/s00439-016-1716-0.CrossRefPubMedGoogle Scholar
  41. 41.
    Kumagai S, Kanagawa S, Morinobu A, Takada M, Nakamura K, Sugai S, et al. Association of a new allele of the TAP2 gene, TAP2*Bky2 (Val577), with susceptibility to Sjogren’s syndrome. Arthritis Rheum. 1997;40(9):1685–92.  https://doi.org/10.1002/1529-0131(199709)40:9<1685::AID-ART19>3.0.CO;2-I.CrossRefPubMedGoogle Scholar
  42. 42.
    Bolstad AI, Le Hellard S, Kristjansdottir G, Vasaitis L, Kvarnstrom M, Sjowall C, et al. Association between genetic variants in the tumour necrosis factor/lymphotoxin alpha/lymphotoxin beta locus and primary Sjogren’s syndrome in Scandinavian samples. Ann Rheum Dis. 2012;71(6):981–8.  https://doi.org/10.1136/annrheumdis-2011-200446.CrossRefPubMedGoogle Scholar
  43. 43.
    Gottenberg JE, Busson M, Loiseau P, Dourche M, Cohen-Solal J, Lepage V, et al. Association of transforming growth factor beta1 and tumor necrosis factor alpha polymorphisms with anti-SSB/La antibody secretion in patients with primary Sjogren’s syndrome. Arthritis Rheum. 2004;50(2):570–80.  https://doi.org/10.1002/art.20060.CrossRefPubMedGoogle Scholar
  44. 44.
    Rusakiewicz S, Nocturne G, Lazure T, Semeraro M, Flament C, Caillat-Zucman S, et al. NCR3/NKp30 contributes to pathogenesis in primary Sjogren’s syndrome. Sci Transl Med. 2013;5(195):195ra96.  https://doi.org/10.1126/scitranslmed.3005727.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Reksten TR, Johnsen SJ, Jonsson MV, Omdal R, Brun JG, Theander E, et al. Genetic associations to germinal centre formation in primary Sjogren’s syndrome. Ann Rheum Dis. 2014;73(6):1253–8.  https://doi.org/10.1136/annrheumdis-2012-202500.CrossRefPubMedGoogle Scholar
  46. 46.
    Petrek M, Cermakova Z, Hutyrova B, Micekova D, Drabek J, Rovensky J, et al. CC chemokine receptor 5 and interleukin-1 receptor antagonist gene polymorphisms in patients with primary Sjogren’s syndrome. Clin Exp Rheumatol. 2002;20(5):701–3.PubMedGoogle Scholar
  47. 47.
    Hulkkonen J, Pertovaara M, Antonen J, Lahdenpohja N, Pasternack A, Hurme M. Genetic association between interleukin-10 promoter region polymorphisms and primary Sjogren’s syndrome. Arthritis Rheum. 2001;44(1):176–9.  https://doi.org/10.1002/1529-0131(200101)44:1<176::AID-ANR23>3.0.CO;2-K.CrossRefPubMedGoogle Scholar
  48. 48.
    Font J, Garcia-Carrasco M, Ramos-Casals M, Aldea AI, Cervera R, Ingelmo M, et al. The role of interleukin-10 promoter polymorphisms in the clinical expression of primary Sjogren’s syndrome. Rheumatology (Oxford). 2002;41(9):1025–30.CrossRefGoogle Scholar
  49. 49.
    Origuchi T, Kawasaki E, Ide A, Kamachi M, Tanaka F, Ida H, et al. Correlation between interleukin 10 gene promoter region polymorphisms and clinical manifestations in Japanese patients with Sjogren’s syndrome. Ann Rheum Dis. 2003;62(11):1117–8.CrossRefGoogle Scholar
  50. 50.
    Maiti AK, Kim-Howard X, Viswanathan P, Guillen L, Rojas-Villarraga A, Deshmukh H, et al. Confirmation of an association between rs6822844 at the Il2-Il21 region and multiple autoimmune diseases: evidence of a general susceptibility locus. Arthritis Rheum. 2010;62(2):323–9.  https://doi.org/10.1002/art.27222.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P, Vasaitis L, et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun. 2011;12(2):100–9.  https://doi.org/10.1038/gene.2010.44.CrossRefPubMedGoogle Scholar
  52. 52.
    Sun F, Li P, Chen H, Wu Z, Xu J, Shen M, et al. Association studies of TNFSF4, TNFAIP3 and FAM167A-BLK polymorphisms with primary Sjogren’s syndrome in Han Chinese. J Hum Genet. 2013;58(7):475–9.  https://doi.org/10.1038/jhg.2013.26.CrossRefPubMedGoogle Scholar
  53. 53.
    Kong F, Li JX, Li P, Li YZ, Zhang FC, Zhang J. Association of TNFSF4 polymorphisms with susceptibility to primary Sjogren’s syndrome and primary biliary cirrhosis in a Chinese Han population. Clin Exp Rheumatol. 2013;31(4):546–51.PubMedGoogle Scholar
  54. 54.
    Nossent JC, Lester S, Zahra D, Mackay CR, Rischmueller M. Polymorphism in the 5′ regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La autoantibody response and serum BAFF levels in primary Sjogren’s syndrome. Rheumatology (Oxford). 2008;47(9):1311–6.  https://doi.org/10.1093/rheumatology/ken246.CrossRefGoogle Scholar
  55. 55.
    Papageorgiou A, Mavragani CP, Nezos A, Zintzaras E, Quartuccio L, De Vita S, et al. A BAFF receptor His159Tyr mutation in Sjogren’s syndrome-related lymphoproliferation. Arthritis Rheumatol. 2015;67(10):2732–41.  https://doi.org/10.1002/art.39231.CrossRefPubMedGoogle Scholar
  56. 56.
    Bolstad AI, Wargelius A, Nakken B, Haga HJ, Jonsson R. Fas and Fas ligand gene polymorphisms in primary Sjogren’s syndrome. J Rheumatol. 2000;27(10):2397–405.PubMedGoogle Scholar
  57. 57.
    Mullighan CG, Heatley S, Lester S, Rischmueller M, Gordon TP, Bardy PG. Fas gene promoter polymorphisms in primary Sjogren’s syndrome. Ann Rheum Dis. 2004;63(1):98–101.CrossRefGoogle Scholar
  58. 58.
    Musone SL, Taylor KE, Nititham J, Chu C, Poon A, Liao W, et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 2011;12(3):176–82.  https://doi.org/10.1038/gene.2010.64.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nordmark G, Wang C, Vasaitis L, Eriksson P, Theander E, Kvarnstrom M, et al. Association of genes in the NF-kappaB pathway with antibody-positive primary Sjogren’s syndrome. Scand J Immunol. 2013;78(5):447–54.  https://doi.org/10.1111/sji.12101.CrossRefPubMedGoogle Scholar
  60. 60.
    Qu S, Du Y, Chang S, Guo L, Fang K, Li Y, et al. Common variants near IKZF1 are associated with primary Sjogren’s syndrome in Han Chinese. PLoS One. 2017;12(5):e0177320.  https://doi.org/10.1371/journal.pone.0177320.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ou TT, Lin CH, Lin YC, Li RN, Tsai WC, Liu HW, et al. IkappaBalpha promoter polymorphisms in patients with primary Sjogren’s syndrome. J Clin Immunol. 2008;28(5):440–4.  https://doi.org/10.1007/s10875-008-9212-5.CrossRefPubMedGoogle Scholar
  62. 62.
    Miceli-Richard C, Gestermann N, Ittah M, Comets E, Loiseau P, Puechal X, et al. The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjogren’s syndrome. Arthritis Rheumatol. 2009;60(7):1991–7.  https://doi.org/10.1002/art.24662.CrossRefGoogle Scholar
  63. 63.
    Nordmark G, Kristjansdottir G, Theander E, Eriksson P, Brun JG, Wang C, et al. Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjogren’s syndrome. Genes Immun. 2009;10(1):68–76.  https://doi.org/10.1038/gene.2008.94.CrossRefPubMedGoogle Scholar
  64. 64.
    Korman BD, Kastner DL, Gregersen PK, Remmers EF. STAT4: genetics, mechanisms, and implications for autoimmunity. Curr Allergy Asthma Rep. 2008;8(5):398–403.CrossRefGoogle Scholar
  65. 65.
    Appel S, Le Hellard S, Bruland O, Brun JG, Omdal R, Kristjansdottir G, et al. Potential association of muscarinic receptor 3 gene variants with primary Sjogren’s syndrome. Ann Rheum Dis. 2011;70(7):1327–9.  https://doi.org/10.1136/ard.2010.138966.CrossRefPubMedGoogle Scholar
  66. 66.
    Downie-Doyle S, Bayat N, Rischmueller M, Lester S. Influence of CTLA4 haplotypes on susceptibility and some extraglandular manifestations in primary Sjogren’s syndrome. Arthritis Rheum. 2006;54(8):2434–40.  https://doi.org/10.1002/art.22004.CrossRefPubMedGoogle Scholar
  67. 67.
    Sun F, Xu J, Wu Z, Li P, Chen H, Su J, et al. Polymorphisms in the FAM167A-BLK, but not BANK1, are associated with primary Sjogren’s syndrome in a Han Chinese population. Clin Exp Rheumatol. 2013;31(5):704–10.PubMedGoogle Scholar
  68. 68.
    Mamtani M, Anaya JM, He W, Ahuja SK. Association of copy number variation in the FCGR3B gene with risk of autoimmune diseases. Genes Immun. 2010;11(2):155–60.  https://doi.org/10.1038/gene.2009.71.CrossRefPubMedGoogle Scholar
  69. 69.
    Nossent JC, Rischmueller M, Lester S. Low copy number of the Fc-gamma receptor 3B gene FCGR3B is a risk factor for primary Sjogren’s syndrome. J Rheumatol. 2012;39(11):2142–7.  https://doi.org/10.3899/jrheum.120294.CrossRefPubMedGoogle Scholar
  70. 70.
    Cobb BL, Fei Y, Jonsson R, Bolstad AI, Brun JG, Rischmueller M, et al. Genetic association between methyl-CpG binding protein 2 (MECP2) and primary Sjogren’s syndrome. Ann Rheum Dis. 2010;69(9):1731–2.  https://doi.org/10.1136/ard.2009.122903.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Li H, Reksten TR, Ice JA, Kelly JA, Adrianto I, Rasmussen A, et al. Identification of a Sjogren’s syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genet. 2017;13(6):e1006820.  https://doi.org/10.1371/journal.pgen.1006820.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gomez LM, Anaya JM, Gonzalez CI, Pineda-Tamayo R, Otero W, Arango A, et al. PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun. 2005;6(7):628–31.  https://doi.org/10.1038/sj.gene.6364261.CrossRefPubMedGoogle Scholar
  73. 73.
    Ittah M, Gottenberg JE, Proust A, Hachulla E, Puechal X, Loiseau P, et al. No evidence for association between 1858 C/T single-nucleotide polymorphism of PTPN22 gene and primary Sjogren’s syndrome. Genes Immun. 2005;6(5):457–8.  https://doi.org/10.1038/sj.gene.6364229.CrossRefPubMedGoogle Scholar
  74. 74.
    Imanishi T, Morinobu A, Hayashi N, Kanagawa S, Koshiba M, Kondo S, et al. A novel polymorphism of the SSA1 gene is associated with anti-SS-A/Ro52 autoantibody in Japanese patients with primary Sjogren’s syndrome. Clin Exp Rheumatol. 2005;23(4):521–4.PubMedGoogle Scholar
  75. 75.
    Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y. Epigenetics and autoimmunity. J Autoimmun. 2010;34(3):J207–19.  https://doi.org/10.1016/j.jaut.2009.12.006.CrossRefPubMedGoogle Scholar
  76. 76.
    Le Dantec C, Varin MM, Brooks WH, Pers JO, Youinou P, Renaudineau Y. Epigenetics and Sjogren’s syndrome. Curr Pharm Biotechnol. 2012;13(10):2046–53.CrossRefGoogle Scholar
  77. 77.
    Kivity S, Arango MT, Ehrenfeld M, Tehori O, Shoenfeld Y, Anaya JM, et al. Infection and autoimmunity in Sjogren’s syndrome: a clinical study and comprehensive review. J Autoimmun. 2014;51:17–22.  https://doi.org/10.1016/j.jaut.2014.02.008.CrossRefPubMedGoogle Scholar
  78. 78.
    Thabet Y, Canas F, Ghedira I, Youinou P, Mageed RA, Renaudineau Y. Altered patterns of epigenetic changes in systemic lupus erythematosus and auto-antibody production: is there a link? J Autoimmun. 2012;39(3):154–60.  https://doi.org/10.1016/j.jaut.2012.05.015.CrossRefPubMedGoogle Scholar
  79. 79.
    Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet. 2015;6:22.  https://doi.org/10.3389/fgene.2015.00022.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Konsta OD, Le Dantec C, Charras A, Cornec D, Kapsogeorgou EK, Tzioufas AG, et al. Defective DNA methylation in salivary gland epithelial acini from patients with Sjogren’s syndrome is associated with SSB gene expression, anti-SSB/LA detection, and lymphocyte infiltration. J Autoimmun. 2016;68:30–8.  https://doi.org/10.1016/j.jaut.2015.12.002.CrossRefPubMedGoogle Scholar
  81. 81.
    Altorok N, Coit P, Hughes T, Koelsch KA, Stone DU, Rasmussen A, et al. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjogren’s syndrome. Arthritis Rheumatol. 2014;66(3):731–9.  https://doi.org/10.1002/art.38264.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Miceli-Richard C, Wang-Renault SF, Boudaoud S, Busato F, Lallemand C, Bethune K, et al. Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjogren’s syndrome. Ann Rheum Dis. 2016;75(5):933–40.  https://doi.org/10.1136/annrheumdis-2014-206998.CrossRefPubMedGoogle Scholar
  83. 83.
    Imgenberg-Kreuz J, Sandling JK, Almlof JC, Nordlund J, Signer L, Norheim KB, et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjogren’s syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis. 2016;75(11):2029–36.  https://doi.org/10.1136/annrheumdis-2015-208659.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cole MB, Quach H, Quach D, Baker A, Taylor KE, Barcellos LF, et al. Epigenetic signatures of salivary gland inflammation in Sjogren’s syndrome. Arthritis Rheumatol. 2016;68(12):2936–44.  https://doi.org/10.1002/art.39792.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Charras A, Konsta OD, Le Dantec C, Bagacean C, Kapsogeorgou EK, Tzioufas AG, et al. Cell-specific epigenome-wide DNA methylation profile in long-term cultured minor salivary gland epithelial cells from patients with Sjogren’s syndrome. Ann Rheum Dis. 2017;76(3):625–8.  https://doi.org/10.1136/annrheumdis-2016-210167.CrossRefPubMedGoogle Scholar
  86. 86.
    Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–901.  https://doi.org/10.1074/jbc.R900012200.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Goodier JL, Kazazian HH Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008;135(1):23–35.  https://doi.org/10.1016/j.cell.2008.09.022.CrossRefPubMedGoogle Scholar
  88. 88.
    Mavragani CP, Sagalovskiy I, Guo Q, Nezos A, Kapsogeorgou EK, Lu P, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 2016;68(11):2686–96.  https://doi.org/10.1002/art.39795.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C, Bhangale T, et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science. 2015;350(6259):455–9.  https://doi.org/10.1126/science.aac7442.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mavragani CP, Nezos A, Sagalovskiy I, Seshan S, Kirou KA, Crow MK. Defective regulation of L1 endogenous retroelements in primary Sjogren’s syndrome and systemic lupus erythematosus: role of methylating enzymes. J Autoimmun. 2018;88:75–82.  https://doi.org/10.1016/j.jaut.2017.10.004.CrossRefPubMedGoogle Scholar
  91. 91.
    Konsta OD, Charras A, Le Dantec C, Kapsogeorgeou E, Bordron A, Brooks WH, et al. Epigenetic modifications in salivary glands from patients with Sjogren’s syndrome affect cytokeratin 19 expression. Bull Group Int Rech Sci Stomatol Odontol. 2016;53(1):e01.PubMedGoogle Scholar
  92. 92.
    Burbelo PD, Ambatipudi K, Alevizos I. Genome-wide association studies in Sjogren’s syndrome: what do the genes tell us about disease pathogenesis? Autoimmun Rev. 2014;13(7):756–61.  https://doi.org/10.1016/j.autrev.2014.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Streubel B, Huber D, Wohrer S, Chott A, Raderer M. Frequency of chromosomal aberrations involving MALT1 in mucosa-associated lymphoid tissue lymphoma in patients with Sjogren’s syndrome. Clin Cancer Res. 2004;10(2):476–80.CrossRefGoogle Scholar
  94. 94.
    Nocturne G, Mariette X. Sjogren syndrome-associated lymphomas: an update on pathogenesis and management. Br J Haematol. 2015;168(3):317–27.  https://doi.org/10.1111/bjh.13192.CrossRefPubMedGoogle Scholar
  95. 95.
    Sutton LA, Agathangelidis A, Belessi C, Darzentas N, Davi F, Ghia P, et al. Antigen selection in B-cell lymphomas—tracing the evidence. Semin Cancer Biol. 2013;23(6):399–409.  https://doi.org/10.1016/j.semcancer.2013.07.006.CrossRefPubMedGoogle Scholar
  96. 96.
    Fragkioudaki S, Nezos A, Souliotis VL, Chatziandreou I, Saetta AA, Drakoulis N, et al. MTHFR gene variants and non-MALT lymphoma development in primary Sjogren’s syndrome. Sci Rep. 2017;7(1):7354.  https://doi.org/10.1038/s41598-017-07347-w.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93(11):3601–9.PubMedGoogle Scholar
  98. 98.
    Du MQ. MALT lymphoma: a paradigm of NF-kappaB dysregulation. Semin Cancer Biol. 2016;39:49–60.  https://doi.org/10.1016/j.semcancer.2016.07.003.CrossRefPubMedGoogle Scholar
  99. 99.
    Murga Penas EM, Hinz K, Roser K, Copie-Bergman C, Wlodarska I, Marynen P, et al. Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia. 2003;17(11):2225–9.  https://doi.org/10.1038/sj.leu.2403122.CrossRefPubMedGoogle Scholar
  100. 100.
    Lahiri A, Pochard P, Le Pottier L, Tobon GJ, Bendaoud B, Youinou P, et al. The complexity of the BAFF TNF-family members: implications for autoimmunity. J Autoimmun. 2012;39(3):189–98.  https://doi.org/10.1016/j.jaut.2012.05.009.CrossRefPubMedGoogle Scholar
  101. 101.
    Novak AJ, Grote DM, Ziesmer SC, Kline MP, Manske MK, Slager S, et al. Elevated serum B-lymphocyte stimulator levels in patients with familial lymphoproliferative disorders. J Clin Oncol. 2006;24(6):983–7.  https://doi.org/10.1200/JCO.2005.02.7938.CrossRefPubMedGoogle Scholar
  102. 102.
    Hildebrand JM, Luo Z, Manske MK, Price-Troska T, Ziesmer SC, Lin W, et al. A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling. J Exp Med. 2010;207(12):2569–79.  https://doi.org/10.1084/jem.20100857.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165(20):2337–44.  https://doi.org/10.1001/archinte.165.20.2337.CrossRefPubMedGoogle Scholar
  104. 104.
    Zhang M, Peng LL, Wang Y, Wang JS, Liu J, Liu MM, et al. Roles of A20 in autoimmune diseases. Immunol Res. 2016;64(2):337–44.  https://doi.org/10.1007/s12026-015-8677-6.CrossRefPubMedGoogle Scholar
  105. 105.
    Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L, et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity. 2010;33(2):181–91.  https://doi.org/10.1016/j.immuni.2010.07.017.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Nocturne G, Boudaoud S, Miceli-Richard C, Viengchareun S, Lazure T, Nititham J, et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjogren’s syndrome. Blood. 2013;122(25):4068–76.  https://doi.org/10.1182/blood-2013-05-503383.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Bi Y, Zeng N, Chanudet E, Huang Y, Hamoudi RA, Liu H, et al. A20 inactivation in ocular adnexal MALT lymphoma. Haematologica. 2012;97(6):926–30.  https://doi.org/10.3324/haematol.2010.036798.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Nocturne G, Tarn J, Boudaoud S, Locke J, Miceli-Richard C, Hachulla E, et al. Germline variation of TNFAIP3 in primary Sjogren’s syndrome-associated lymphoma. Ann Rheum Dis. 2016;75(4):780–3.  https://doi.org/10.1136/annrheumdis-2015-207731.CrossRefPubMedGoogle Scholar
  109. 109.
    van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from May to August 2017. J Hematopathol. 2017;10(2):65–73.  https://doi.org/10.1007/s12308-017-0303-1.CrossRefGoogle Scholar
  110. 110.
    Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, et al. One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet. 2007;122(5):525–33.  https://doi.org/10.1007/s00439-007-0431-2.CrossRefPubMedGoogle Scholar
  111. 111.
    Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.  https://doi.org/10.1038/nature08467.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Chen JQ, Papp G, Poliska S, Szabo K, Tarr T, Balint BL, et al. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjogren’s syndrome. PLoS One. 2017;12(3):e0174585.  https://doi.org/10.1371/journal.pone.0174585.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Shi H, Zheng LY, Zhang P, Yu CQ. miR-146a and miR-155 expression in PBMCs from patients with Sjogren’s syndrome. J Oral Pathol Med. 2014;43(10):792–7.  https://doi.org/10.1111/jop.12187.CrossRefPubMedGoogle Scholar
  114. 114.
    Wang-Renault SF, Boudaoud S, Nocturne G, Roche E, Sigrist N, Daviaud C, et al. Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjogren’s syndrome. Ann Rheum Dis. 2018;77(1):133–40.  https://doi.org/10.1136/annrheumdis-2017-211417.CrossRefPubMedGoogle Scholar
  115. 115.
    Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, et al. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J. 2014;28(6):2551–65.  https://doi.org/10.1096/fj.13-248880.CrossRefPubMedGoogle Scholar
  116. 116.
    Gourzi VC, Kapsogeorgou EK, Kyriakidis NC, Tzioufas AG. Study of microRNAs (miRNAs) that are predicted to target the autoantigens Ro/SSA and La/SSB in primary Sjogren’s syndrome. Clin Exp Immunol. 2015;182(1):14–22.  https://doi.org/10.1111/cei.12664.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Kapsogeorgou EK, Gourzi VC, Manoussakis MN, Moutsopoulos HM, Tzioufas AG. Cellular microRNAs (miRNAs) and Sjogren’s syndrome: candidate regulators of autoimmune response and autoantigen expression. J Autoimmun. 2011;37(2):129–35.  https://doi.org/10.1016/j.jaut.2011.05.003.CrossRefPubMedGoogle Scholar
  118. 118.
    Gallo A, Jang SI, Ong HL, Perez P, Tandon M, Ambudkar I, et al. Targeting the Ca2+ sensor STIM1 by exosomal transfer of Ebv-miR-BART13-3p is associated with Sjogren’s syndrome. EBioMedicine. 2016;10:216–26.  https://doi.org/10.1016/j.ebiom.2016.06.041.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ghorbani S, Talebi F, Chan WF, Masoumi F, Vojgani M, Power C, et al. MicroRNA-181 variants regulate T cell phenotype in the context of autoimmune neuroinflammation. Front Immunol. 2017;8:758.  https://doi.org/10.3389/fimmu.2017.00758.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Peng L, Ma W, Yi F, Yang YJ, Lin W, Chen H, et al. MicroRNA profiling in Chinese patients with primary Sjogren syndrome reveals elevated miRNA-181a in peripheral blood mononuclear cells. J Rheumatol. 2014;41(11):2208–13.  https://doi.org/10.3899/jrheum.131154.CrossRefPubMedGoogle Scholar
  121. 121.
    Tandon M, Gallo A, Jang SI, Illei GG, Alevizos I. Deep sequencing of short RNAs reveals novel microRNAs in minor salivary glands of patients with Sjogren's syndrome. Oral Dis. 2012;18(2):127–31.  https://doi.org/10.1111/j.1601-0825.2011.01849.x.CrossRefPubMedGoogle Scholar
  122. 122.
    Williams AE, Choi K, Chan AL, Lee YJ, Reeves WH, Bubb MR, et al. Sjogren’s syndrome-associated microRNAs in CD14(+) monocytes unveils targeted TGFbeta signaling. Arthritis Res Ther. 2016;18(1):95.  https://doi.org/10.1186/s13075-016-0987-0.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Yang Y, Peng L, Ma W, Yi F, Zhang Z, Chen H, et al. Autoantigen-targeting microRNAs in Sjogren’s syndrome. Clin Rheumatol. 2016;35(4):911–7.  https://doi.org/10.1007/s10067-016-3203-3.CrossRefPubMedGoogle Scholar
  124. 124.
    Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16(1):34–8.  https://doi.org/10.1111/j.1601-0825.2009.01604.x.CrossRefPubMedGoogle Scholar
  125. 125.
    Alevizos I, Alexander S, Turner RJ, Illei GG. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjogren’s syndrome. Arthritis Rheum. 2011;63(2):535–44.  https://doi.org/10.1002/art.30131.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laëtitia Le Pottier
    • 1
  • Kahina Amrouche
    • 1
  • Amandine Charras
    • 1
  • Anne Bordron
    • 1
  • Jacques-Olivier Pers
    • 1
    Email author
  1. 1.Univ Brest, UMR1227, Lymphocytes B et AutoimmunitéBrestFrance

Personalised recommendations