Advertisement

Analysis of Encoder Representations as Features Using Sparse Autoencoders in Gradient Boosting and Ensemble Tree Models

  • Luis AguilarEmail author
  • L. Antonio AguilarEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11238)

Abstract

The performance of learning algorithms relies on factors such as the training strategy, the parameter tuning approach, and data complexity; in this scenario, extracted features play a fundamental role. Since not all the features maintain useful information, they can add noise, thus decreasing the performance of the algorithms. To address this issue, a variety of techniques such as feature ex-traction, feature engineering and feature selection have been developed, most of which fall into the unsupervised learning category. This study explores the generation of such features, using a set of k encoder layers, which are used to produce a low dimensional feature set F. The encoder layers were trained using a two-layer depth sparse autoencoder model, where PCA was used to estimate the right number of hidden units in the first layer. Then, a set of four algorithms, which belong to the gradient boosting and ensemble families were trained using the generated features. Finally, a performance comparison, using the encoder features against the original features was made. The results show that by using the reduced features it is possible to achieve equal or better results. Also, the approach improves more with highly imbalanced data sets.

Keywords

Unsupervised learning Sparse autoencoders Feature generation Gradient boosting models Ensemble models 

References

  1. 1.
    Martínez-Romo, J.C., Luna-rosas, F.J., Mora-gonzález, M., De Luna-ortega, C.A.: Optimal feature generation with genetic algorithms and FLDR in a restricted-vocabulary speech recognition system. In: Bio-Inspired Computational Algorithms and Their Applications, pp. 235–262 (2012).  https://doi.org/10.5772/36135Google Scholar
  2. 2.
    Cheng, W., Kasneci, G., Graepel, T., Stern, D., Herbrich, R.: Automated feature generation from structured knowledge. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, p. 1395 (2011).  https://doi.org/10.1145/2063576.2063779
  3. 3.
    Katz, G., Shin, E.C.R., Song, D.: ExploreKit: automatic feature generation and selection. In: Proceedings - IEEE 16th International Conference on Data Mining (ICDM), pp. 979–984 (2016).  https://doi.org/10.1109/ICDM.2016.0123
  4. 4.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986).  https://doi.org/10.1038/323533a0CrossRefzbMATHGoogle Scholar
  5. 5.
    Ng, A.: Sparse autoencoder. In: CS294A Lecture Notes, pp. 1–19 (2011). http://web.stanford.edu/class/cs294a/sae/sparseAutoencoderNotes.pdf
  6. 6.
    Kingma, D.P., Welling, M.: Auto-encoding variational Bayes, pp. 1–14 (2013). https://arxiv.org/abs/1312.6114
  7. 7.
    Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of 25th Annual International Conference on Machine Learning, ICML 2008, pp. 1096–1103 (2008).  https://doi.org/10.1145/1390156.1390294
  8. 8.
    Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G.W., Silver, D.L. (eds.) ICML Unsupervised and Transfer Learning, pp. 37–50 (2012). JMLR.org
  9. 9.
    Yu, W., Zeng, G., Luo, P., Zhuang, F., He, Q., Shi, Z.: Embedding with autoencoder regularization. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 208–223. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40994-3_14CrossRefGoogle Scholar
  10. 10.
    Bosch, N., Paquette, L.: Unsupervised deep autoencoders for feature extraction with educational data. In: Deep Learning with Educational Data Workshop at the 10th International Conference on Educational Data Mining (2017)Google Scholar
  11. 11.
    Meng, Q., Catchpoole, D., Skillicom, D., Kennedy, P.J.: Relational autoencoder for feature extraction. In: Proceedings of International Joint Conference Neural Networks, May 2017, pp. 364–371 (2017).  https://doi.org/10.1109/ijcnn.2017.7965877
  12. 12.
    DeVries, T., Taylor, G.W.: Dataset augmentation in feature space, pp. 1–12 (2017). https://arxiv.org/abs/1702.05538v1
  13. 13.
    Yousefi-azar, M., Varadharajan, V., Hamey, L., Tupakula, U.: Autoencoder-based feature learning for cyber security applications. In: International Joint Conference on Neural Networks 2017 (IJCNN), pp. 3854–3861 (2017).  https://doi.org/10.1109/IJCNN.2017.7966342
  14. 14.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).  https://doi.org/10.1109/TPAMI.2013.50CrossRefGoogle Scholar
  15. 15.
    Makhzani, A., Frey, B.: k-sparse autoencoders (2013). https://arxiv.org/abs/1312.5663
  16. 16.
    Ju, Y., Guo, J., Liu, S.: A deep learning method combined sparse autoencoder with SVM. In: 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 257–260. IEEE (2015).  https://doi.org/10.1109/CyberC.2015.39
  17. 17.
    Kampffmeyer, M., Løkse, S., Bianchi, F.M., Jenssen, R., Livi, L.: Deep kernelized autoencoders. In: Sharma, P., Bianchi, F. (eds.) Image Analysis. SCIA 2017. LNCS, vol. 10269, pp. 419–430. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59126-1_35CrossRefGoogle Scholar
  18. 18.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chollet, F.: Keras. GitHub Repos (2015). https://keras.io/
  20. 20.
    Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min. 10, 36 (2017).  https://doi.org/10.1186/s13040-017-0154-4CrossRefGoogle Scholar
  21. 21.
    Ke, G., Meng, Q., Wang, T., Chen, W., Ma, W., Liu, T.-Y.: LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3148–3156 (2017)Google Scholar
  22. 22.
    Dorogush, A.V., Ershov, V., Yandex, A.G.: CatBoost: gradient boosting with categorical features support. In: Workshop on ML System, NIPS 2017, pp. 1–7 (2017)Google Scholar
  23. 23.
    Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class AdaBoost. Stat. Interface 2, 349–360 (2009).  https://doi.org/10.4310/SII.2009.v2.n3.a8MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001).  https://doi.org/10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Academic Department of MathematicsNational University of PiuraPiuraPeru
  2. 2.Computer and System SchoolAntenor Orrego Private UniversityTrujilloPeru

Personalised recommendations