Advertisement

Quantitative Characterization of Digestion Processes

  • Lotti EggerEmail author
  • Olivia Ménard
  • Reto Portmann
Chapter

Abstract

The growing interest in understanding the molecular mechanisms of digestive processes led to an increasing number of different in vivo and in vitro studies focusing on the understanding of food digestion and the physiological impacts on the human body. For this purpose, dedicated analytical methods were developed to characterize and quantify the different intermediate and final products of nutrient hydrolysis. However, one major issue is the comparability of analytical results between different experimental setups and individual labs. The COST action Infogest network (http://www.cost-infogest.eu/) specifically defined the experimental conditions and the corresponding enzymatic tests for a harmonized in vitro digestion protocol based on physiological data from literature. The new protocol increased the reproducibility of results between labs and between different studies. Moreover, the analytical methods developed in parallel, allow for the verification of the progress in nutrient hydrolysis and the variations between different experiments. This book chapter gives a short introduction on the in vitro digestion protocol and describes the analytical methods suited for the assessment of protein digestion during IVD. Moreover, methods for the quantification of lipids and carbohydrates are described. The final part of this chapter offers a selection of analytical results showing the relationship between food digestion and nutrition.

Keywords

In vitro digestion Protein hydrolysis Bioactive peptides Essential amino acids Lipids Carbohydrates 

References

  1. Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. London, New York, New York, NY: Elsevier Applied Science Publishers, Sole Distributor in the USA and Canada, Elsevier Science Publishing Company.Google Scholar
  2. Aluko, R. E. (2015). Antihypertensive peptides from food proteins. Annual Review of Food Science and Technology, 6, 235–262. https://doi.org/10.1146/annurev-food-022814-015520CrossRefPubMedGoogle Scholar
  3. Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., et al. (2017). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition, 14, 1–23. https://doi.org/10.1080/10408398.2017.1315362CrossRefGoogle Scholar
  4. Bossios, A., Theodoropoulou, M., Mondoulet, L., Rigby, N. M., Papadopoulos, N. G., Bernard, H., et al. (2011). Effect of simulated gastro-duodenal digestion on the allergenic reactivity of beta-lactoglobulin. Clinical and Translational Allergy, 1(1), 6. https://doi.org/10.1186/2045-7022-1-6CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bourlieu, C., Menard, O., De La Chevasnerie, A., Sams, L., Rousseau, F., Madec, M. N., et al. (2015). The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry, 182, 224–235. https://doi.org/10.1016/j.foodchem.2015.03.001CrossRefGoogle Scholar
  6. Bourlieu, C., Rousseau, F., Briard-Bion, V., Madec, M. N., & Bouhallab, S. (2012). Hydrolysis of native milk fat globules by microbial lipases: Mechanisms and modulation of interfacial quality. Food Research International, 49(1), 533–544. https://doi.org/10.1016/j.foodres.2012.07.036CrossRefGoogle Scholar
  7. Caira, S., Pinto, G., Vitaglione, P., Dal Piaz, F., Ferranti, P., & Addeo, F. (2016). Identification of casein peptides in plasma of subjects after a cheese-enriched diet. Food Research International, 84, 108–112. https://doi.org/10.1016/j.foodres.2016.03.023CrossRefGoogle Scholar
  8. Carriere, F., Grandval, P., Renou, C., Palomba, A., Prieri, F., Giallo, J., et al. (2005). Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clinical Gastroenterology and Hepatology, 3(1), 28–38.CrossRefGoogle Scholar
  9. de Oliveira, S. C., Deglaire, A., Ménard, O., Bellanger, A., Rousseau, F., Henry, G., et al. (2016). Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Research International, 88, 263–275. https://doi.org/10.1016/j.foodres.2015.11.022CrossRefGoogle Scholar
  10. Egger, L., & Ménard, O. (2017). Update on bioactive peptides after milk and cheese digestion. Current Opinion in Food Science, 14, 116–121. https://doi.org/10.1016/j.cofs.2017.03.003CrossRefGoogle Scholar
  11. Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225. https://doi.org/10.1016/j.foodres.2015.12.006CrossRefGoogle Scholar
  12. Egger, L., Schlegel, P., Baumann, C., Stoffers, H., Guggisberg, D., Brügger, C., et al. (2017a). Mass spectrometry data of in vitro and in vivo pig digestion of skim milk powder. Food Research International. Data in Brief.Google Scholar
  13. Egger, L., Schlegel, P., Baumann, C., Stoffers, H., Guggisberg, D., Brügger, C., et al. (2017b). Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Research International, 102, 567–574.CrossRefGoogle Scholar
  14. Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell Jr., H. M., Harwalkar, V. R., Jenness, R., et al. (1984). Nomenclature of proteins of cow’s milk: Fifth revision. Journal of Dairy Science, 67(8), 1599–1631. https://doi.org/10.3168/jds.S0022-0302(84)81485-XCrossRefGoogle Scholar
  15. Hasjim, J., Lavau, G. C., Gidley, M. J., & Gilbert, R. G. (2010). In vivo and in vitro starch digestion: Are current in vitro techniques adequate? Biomacromolecules, 11(12), 3600–3608. https://doi.org/10.1021/bm101053yCrossRefPubMedGoogle Scholar
  16. Hernandez-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science, 165(1), 23–35. https://doi.org/10.1016/j.cis.2010.11.001CrossRefPubMedGoogle Scholar
  17. Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1–12. https://doi.org/10.1016/j.foodchem.2010.08.036CrossRefGoogle Scholar
  18. ISO (8968-3:2007/IDF 20-3:2007). (2007). Milk. Determination of nitrogen content. ISO Standard.Google Scholar
  19. Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergeres, G., Portmann, R., & Egger, L. (2012). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. The Journal of Nutrition, 142(2), 245–250. https://doi.org/10.3945/jn.111.148635CrossRefPubMedGoogle Scholar
  20. Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R., & Egger, L. (2014). Impact of milk processing on the generation of peptides during digestion. International Dairy Journal, 35(2), 130–138. https://doi.org/10.1016/j.idairyj.2013.10.012CrossRefGoogle Scholar
  21. Mandalari, G., Adel-Patient, K., Barkholt, V., Baro, C., Bennett, L., Bublin, M., et al. (2009). In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions: A multi-laboratory evaluation. Regulatory Toxicology and Pharmacology, 55(3), 372–381. https://doi.org/10.1016/j.yrtph.2009.08.010CrossRefGoogle Scholar
  22. Miller, K., Meredith, C., Selo, I., & Wal, J. M. (1999). Allergy to bovine beta-lactoglobulin: Specificity of immunoglobulin E generated in the Brown Norway rat to tryptic and synthetic peptides. Clinical and Experimental Allergy, 29(12), 1696–1704.CrossRefGoogle Scholar
  23. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food: An international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702jCrossRefPubMedGoogle Scholar
  24. Moretti, R., & Thorson, J. S. (2008). A comparison of sugar indicators enables a universal high-throughput sugar-1-phosphate nucleotidyltransferase assay. Analytical Biochemistry, 377(2), 251–258. https://doi.org/10.1016/j.ab.2008.03.018CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nehir El, S., Karakaya, S., Simsek, S., Dupont, D., Menfaatli, E., & Eker, A. T. (2015). In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST cost action) and bioactivities of the resultant peptides. Food and Function, 6(7), 2322–2330. https://doi.org/10.1039/c5fo00357aCrossRefPubMedGoogle Scholar
  26. Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642–646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.xCrossRefGoogle Scholar
  27. Nongonierma, A. B., & FitzGerald, R. J. (2015a). Bioactive properties of milk proteins in humans: A review. Peptides, 73, 20–34.CrossRefGoogle Scholar
  28. Nongonierma, A. B., & FitzGerald, R. J. (2015b). The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. Journal of Functional Foods, 17, 640–656. https://doi.org/10.1016/j.jff.2015.06.021CrossRefGoogle Scholar
  29. Picariello, G., Miralles, B., Mamone, G., Sanchez-Rivera, L., Recio, I., Addeo, F., et al. (2015). Role of intestinal brush border peptidases in the simulated digestion of milk proteins. Molecular Nutrition and Food Research, 59(5), 948–956. https://doi.org/10.1002/mnfr.201400856CrossRefPubMedGoogle Scholar
  30. Regazzo, D., Molle, D., Gabai, G., Tome, D., Dupont, D., Leonil, J., et al. (2010). The (193-209) 17-residues peptide of bovine beta-casein is transported through Caco-2 monolayer. Molecular Nutrition and Food Research, 54(10), 1428–1435. https://doi.org/10.1002/mnfr.200900443CrossRefPubMedGoogle Scholar
  31. Romano, A., Mackie, A., Farina, F., Aponte, M., Sarghini, F., & Masi, P. (2016). Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients. Journal of Food Science and Technology, 53(12), 4126–4134. https://doi.org/10.1007/s13197-016-2375-9CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sanchez-Rivera, L., Ares, I., Miralles, B., Gomez-Ruiz, J. A., Recio, I., Martinez-Larranaga, M. R., et al. (2014). Bioavailability and kinetics of the antihypertensive casein-derived peptide HLPLP in rats. Journal of Agricultural and Food Chemistry, 62(49), 11869–11875. https://doi.org/10.1021/jf5035256CrossRefPubMedGoogle Scholar
  33. Sánchez-Rivera, L., Santos, P. F., Miralles, B., Carrón, R., José Montero, M., & Recio, I. (2016). Peptide fragments from β-casein f(134–138), HLPLP, generated by the action of rat blood plasma peptidases show potent antihypertensive activity. Food Research International, 88(Part B), 348–353. https://doi.org/10.1016/j.foodres.2015.12.007CrossRefGoogle Scholar
  34. Sanchón, J., Fernández-Tomé, S., Miralles, B., Hernández-Ledesma, B., Tomé, D., Gaudichon, C., et al. (2018). Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chemistry, 239, 486–494. https://doi.org/10.1016/j.foodchem.2017.06.134CrossRefPubMedGoogle Scholar
  35. Selo, I., Clement, G., Bernard, H., Chatel, J., Creminon, C., Peltre, G., et al. (1999). Allergy to bovine beta-lactoglobulin: Specificity of human IgE to tryptic peptides. Clinical and Experimental Allergy, 29(8), 1055–1063.CrossRefGoogle Scholar
  36. Spellman, D., McEvoy, E., O’Cuinn, G., & FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13(6), 447–453. https://doi.org/10.1016/S0958-6946(03)00053-0CrossRefGoogle Scholar
  37. Versantvoort, C. H., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J., & Sips, A. J. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31–40. https://doi.org/10.1016/j.fct.2004.08.007CrossRefPubMedGoogle Scholar
  38. Wal, J. M. (1998). Immunochemical and molecular characterization of milk allergens. Allergy, 53(46 Suppl), 114–117.CrossRefGoogle Scholar
  39. Warren, F. J., Zhang, B., Waltzer, G., Gidley, M. J., & Dhital, S. (2015). The interplay of alpha-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydr Polym, 117, 192–200.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AgroscopeBernSwitzerland
  2. 2.STLO, UMR 1253, INRA, Agrocampus OuestRennesFrance

Personalised recommendations