Advertisement

From Bite to Nutrient: The Importance of Length Scales

  • Didier DupontEmail author
  • Françoise Nau
Chapter

Abstract

Unravelling the mechanisms of food disintegration in the gastrointestinal tract should allow for a better understanding of the effect of food on human health. Several studies have reported the behavior of pure compounds (macronutrients or micronutrients) in digestive conditions. However, micronutrients and macronutrients are not often consumed as pure compounds but mostly embedded into food matrices. The structure of food products is now considered as a key parameter that strongly influences the release of nutrients in the gastrointestinal tract and their bioavailability in the bloodstream. This chapter therefore focuses on how the structure of foods and food constituents affects digestion. It shows that depending on the length scale that is chosen to follow food disintegration, data obtained can vary significantly.

Keywords

Protein Digestion Length scale Structure Kinetics of hydrolysis 

References

  1. Armand, M., Pasquier, B., Andre, M., Borel, P., Senft, M., Peyrot, J., et al. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. American Journal of Clinical Nutrition, 70(6), 1096–1106.CrossRefGoogle Scholar
  2. Astwood, J. D., Leach, J. N., & Fuchs, R. L. (1996). Stability of food allergens to digestion in vitro. Nature Biotechnology, 14(10), 1269–1273.CrossRefGoogle Scholar
  3. Barbe, F., Menard, O., Le Gouar, Y., Buffiere, C., Famelart, M. H., Laroche, B., et al. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 136(3–4), 1203–1212.CrossRefGoogle Scholar
  4. Barbe, F., Menard, O., Le Gouar, Y., Buffiere, C., Famelart, M. H., Laroche, B., et al. (2014). Acid and rennet gels exhibit strong differences in the kinetics of milk protein digestion and amino acid bioavailability. Food Chemistry, 143, 1–8.CrossRefGoogle Scholar
  5. Bax, M. L., Aubry, L., Ferreira, C., Daudin, J. D., Gatellier, P., Remond, D., et al. (2012). Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms. Journal of Agricultural and Food Chemistry, 60(10), 2569–2576.CrossRefGoogle Scholar
  6. Bøgh, K. L., & Madsen, C. B. (2015). Food allergens: Is there a correlation between stability to digestion and allergenicity? Critical Reviews in Food Science and Nutrition, 56(5), 1545–1567.Google Scholar
  7. Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., et al. (2013). Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. American Journal of Clinical Nutrition, 97(6), 1314–1323.CrossRefGoogle Scholar
  8. Capriotti, A. L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R. Z., et al. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. Journal of Food Composition and Analysis, 44, 205–213.CrossRefGoogle Scholar
  9. Capriotti, A. L., Cavaliere, C., Foglia, P., Piovesana, S., Samperi, R., Chiozzi, R. Z., et al. (2015). Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins. Analytical and Bioanalytical Chemistry, 407(3), 845–854.CrossRefGoogle Scholar
  10. Caron, J., Cudennec, B., Domenger, D., Belguesmia, Y., Flahaut, C., Kouach, M., et al. (2016). Simulated GI digestion of dietary protein: Release of new bioactive peptides involved in gut hormone secretion. Food Research International, 89, 382–390.CrossRefGoogle Scholar
  11. Croguennec, T., Nau, F., & Brule, G. (2002). Influence of pH and salts on egg white gelation. Journal of Food Science, 67(2), 608–614.CrossRefGoogle Scholar
  12. de Oliveira, S. C., Bellanger, A., Menard, O., Pladys, P., Le Gouar, Y., Dirson, E., et al. (2017). Impact of human milk pasteurization on gastric digestion in preterm infants: A randomized controlled trial. The American Journal of Clinical Nutrition, 105(2), 379–390.CrossRefGoogle Scholar
  13. de Oliveira, S. C., Bourlieu, C., Ménard, O., Bellanger, A., Henry, G., Rousseau, F., et al. (2016). Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry, 211, 171–179.CrossRefGoogle Scholar
  14. de Oliveira, S. C., Deglaire, A., Menard, O., Bellanger, A., Rousseau, F., Henry, G., et al. (2016). Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Research International, 88, 263–275.CrossRefGoogle Scholar
  15. Doiron, K., Yu, P., McKinnon, J. J., & Christensen, D. A. (2009). Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. Journal of Dairy Science, 92(7), 3319–3330.CrossRefGoogle Scholar
  16. Dupont, D, Mandalari, G, Molle, D, Jardin, J, Leonil, J, Faulks RM, et al. (2010a). Comparative resistance of food proteins to adult and infant in vitro digestion models. Molecular Nutrition and Food Research, 54(6), 767–780.CrossRefGoogle Scholar
  17. Dupont, D, Mandalari, G, Molle, D, Jardin, J, Rolet-Repecaud, O, Duboz, G et al. (2010b). Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition and Food Research, 54(11), 1677–1689.CrossRefGoogle Scholar
  18. Ferranti, P., Nitride, C., Nicolai, M. A., Mamone, G., Picariello, G., Bordoni, A., et al. (2014). In vitro digestion of Bresaola proteins and release of potential bioactive peptides. Food Research International, 63, 157–169.CrossRefGoogle Scholar
  19. Fu, T. T., Abbott, U. R., & Hatzos, C. (2002). Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid—A comparative study. Journal of Agricultural and Food Chemistry, 50(24), 7154–7160.CrossRefGoogle Scholar
  20. Hamuro, Y., Coales, S. J., Molnar, K. S., Tuske, S. J., & Morrow, J. A. (2008). Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Communications in Mass Spectrometry, 22(7), 1041–1046.CrossRefGoogle Scholar
  21. ISO. (2010). ISO 26642-2010. Food products—Determination of the Glycaemic index (GI) and recommandation for food classification.Google Scholar
  22. Jeffery, J., Holzenburg, A., & King, S. (2012). Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. Journal of the Science of Food and Agriculture, 92(13), 2594–2602.CrossRefGoogle Scholar
  23. Lack, G., Chapman, M., Kalsheker, N., King, V., Robinson, C., & Venables, K. (2002). Report on the potential allergenicity of genetically modified organisms and their products. Clinical and Experimental Allergy, 32(8), 1131–1143.CrossRefGoogle Scholar
  24. Le Feunteun, S., Barbe, F., Remond, D., Menard, O., Le Gouar, Y., Dupont, D., et al. (2014). Impact of the dairy matrix structure on milk protein digestion kinetics: Mechanistic modelling based on mini-pig in vivo data. Food and Bioprocess Technology, 7(4), 1099–1113.CrossRefGoogle Scholar
  25. Livny, O., Reifen, R., Levy, I., Madar, Z., Faulks, R., Southon, S., et al. (2003). Beta-carotene bioavailability from differently processed carrot meals in human ileostomy volunteers. European Journal of Nutrition, 42(6), 338–345.CrossRefGoogle Scholar
  26. Macierzanka, A., Bottger, F., Lansonneur, L., Groizard, R., Jean, A. S., Rigby, N. M., et al. (2012). The effect of gel structure on the kinetics of simulated gastrointestinal digestion of bovine beta-lactoglobulin. Food Chemistry, 134(4), 2156–2163.CrossRefGoogle Scholar
  27. Mandalari, G., Adel-Patient, K., Barkholt, V., Baro, C., Bennett, L., Bublin, M., et al. (2009). In vitro digestibility of beta-casein and beta-lactoglobulin under simulated human gastric and duodenal conditions: A multi-laboratory evaluation. Regulatory Toxicology and Pharmacology, 55(3), 372–381.CrossRefGoogle Scholar
  28. Mills, E. N. C., Jenkins, J. A., Alcocer, M. J. C., & Shewry, P. R. (2004). Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 44(5), 379–407.CrossRefGoogle Scholar
  29. Nyemb, K., Guerin-Dubiard, C., Dupont, D., Jardin, J., Rutherfurd, S. M., & Nau, F. (2014). The extent of ovalbumin in vitro digestion and the nature of generated peptides are modulated by the morphology of protein aggregates. Food Chemistry, 157, 429–438.CrossRefGoogle Scholar
  30. Nyemb, K., Guerin-Dubiard, C., Pezennec, S., Jardin, J., Briard-Bion, V., Cauty, C., et al. (2016). The structural properties of egg white gels impact the extent of in vitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 54, 315–327.CrossRefGoogle Scholar
  31. Palmero, P., Lemmens, L., Ribas-Agusti, A., Sosa, C., Met, K., Umutoni, J. D., et al. (2013). Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems. Food Chemistry, 141(3), 2036–2043.CrossRefGoogle Scholar
  32. Parada, J., & Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72(2), R21–R32.CrossRefGoogle Scholar
  33. Peram, M. R., Loveday, S. M., Ye, A. Q., & Singh, H. (2013). In vitro gastric digestion of heat-induced aggregates of beta-lactoglobulin. Journal of Dairy Science, 96(1), 63–74.CrossRefGoogle Scholar
  34. Petitot, M., Abecassis, J., & Micard, V. (2009). Structuring of pasta components during processing: Impact on starch and protein digestibility and allergenicity. Trends in Food Science and Technology, 20(11–12), 521–532.CrossRefGoogle Scholar
  35. Saulnier, L., Ducasse, M., Chiron, H., Della Valle, G., Martin, C., Issanchou, S., et al. (2010). Impact of texture modification and dietary fibre content on the glycemic index and the acceptability of French bread. Wageningen: Wageningen Academic Publishers.Google Scholar
  36. Schweiggert, R. M., Mezger, D., Schimpf, F., Steingass, C. B., & Carle, R. (2012). Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chemistry, 135(4), 2736–2742.CrossRefGoogle Scholar
  37. Takagi, K., Teshima, R., Okunuki, H., & Sawada, J. (2003). Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biological and Pharmaceutical Bulletin, 26(7), 969–973.CrossRefGoogle Scholar
  38. Thévenot, J., Cauty, C., Legland, D., Dupont, D., & Floury, J. (2017). Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chemistry, 223, 54–61.CrossRefGoogle Scholar
  39. Tydeman, E. A., Parker, M. L., Wickham, M. S. J., Rich, G. T., Faulks, R. M., Gidley, M. J., et al. (2010). Effect of carrot (Daucus carota) microstructure on carotene bioaccessibility in the upper gastrointestinal tract. 1. In vitro simulations of carrot digestion. Journal of Agricultural and Food Chemistry, 58(17), 9847–9854.CrossRefGoogle Scholar
  40. Untersmayr, E., Bakos, N., Scholl, I., Kundi, M., Roth-Walter, F., Szalai, K., et al. (2005). Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB Journal, 19(1), 656–658.CrossRefGoogle Scholar
  41. Untersmayr, E., Scholl, I., Swoboda, I., Beil, W. J., Forster-Waldl, E., Walter, F., et al. (2003). Antacid medication inhibits digestion of dietary proteins and causes food allergy: A fish allergy model in Balb/c mice. Journal of Allergy and Clinical Immunology, 112(3), 616–623.CrossRefGoogle Scholar
  42. Vors, C., Pineau, G., Gabert, L., Drai, J., Louche-Pelissier, C., Defoort, C., et al. (2013). Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial. American Journal of Clinical Nutrition, 97(1), 23–36.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.STLO, Agrocampus Ouest INRARennes CedexFrance

Personalised recommendations