Advertisement

Influence of Physical and Structural Aspects of Food on Starch Digestion

  • Ingrid Contardo
  • Pedro BouchonEmail author
Chapter

Abstract

High consumption of starch-based foods is associated with type 2 diabetes, which has developed into a worldwide epidemic. Further, type 2 diabetes is also closely linked with obesity, as obese individuals often develop exacerbated insulin resistance. As changing the dietary habits of consumers is difficult, efforts may be directed at increasing the content of resistant starch in foods. Precluding starch digestibility through food product formulation or processing may be a reasonable alternative to reduce starch digestibility, slowing-down associated glycemic response. In this chapter, we examine main steps of starch digestion in the body, using a mass transfer perspective, in order to get a better understanding about how food properties (food composition and structure) as well as food processing may influence starch digestion.

Keywords

Starch digestion Structure Modeling In vitro Engineering digestion 

References

  1. Alam, S. A., Pentikäinen, S., Närväinen, J., Holopainen-Mantila, U., Poutanen, K., & Sozer, N. (2017). Effects of structural and textural properties of brittle cereal foams on mechanisms of oral breakdown and in vitro starch digestibility. Food Research International, 96, 1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  2. AlHasawi, F. M., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y. Y., Corradini, M. G., et al. (2017). In vitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocolloids, 70, 293–303.CrossRefGoogle Scholar
  3. Amaral, O., Guerreiro, C. S., Gomes, A., & Cravo, M. (2016). Resistant starch production in wheat bread: Effect of ingredients, baking conditions and storage. European Food Research and Technology, 242(10), 1747–1753.CrossRefGoogle Scholar
  4. American Association of Cereal Chemists. (2001). The definition of dietary fibre. Cereal Foods World, 46(3), 112–126.Google Scholar
  5. Baks, T., Bruins, M. E., Janssen, A. E. M., & Boom, R. M. (2008). Effect of pressure and temperature on the gelatinization of starch at various starch concentrations. Biomacromolecules, 9(1), 296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Behall, K. M., Scholfield, D., Hallfrisch, J., & Liljeberg-Elmstahl, H. (2006). Consumption of both resistant starch and B-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care, 29(5), 976–981.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bhattarai, R. R., Dhital, S., & Gidley, M. J. (2016). Interactions among macronutrients in wheat flour determine their enzymic susceptibility. Food Hydrocolloids, 61, 415–425.CrossRefGoogle Scholar
  8. Bhattarai, R. R., Dhital, S., Wu, P., Chen, X., & Gidley, M. (2017). Digestion of isolated legume cells in a stomach-duodenum model: Three mechanisms limit starch and protein hydrolysis. Food & Function, 8, 2573–2582.CrossRefGoogle Scholar
  9. Biliaderis, C. G., Maurice, T. J., & Vose, J. R. (1980). Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of Food Science, 45(6), 1669–1674.CrossRefGoogle Scholar
  10. Birt, D. F., Boylston, T., Hendrich, S., Jane, J., Hollis, J., Li, L., et al. (2013). Resistant starch: Promise for improving human health. American Society for Nutrition, 4, 587–601.Google Scholar
  11. Bjorck, I., Granfeldt, Y., Liljeberg, H., Tovar, J., & Asp, N. (1994). Food properties affecting the digestion and absorption of carbohydrates. American Journal of Clinical Nutrition, 59, 699S–705S.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bjorck, I., Liljeberg, H., & Ostman, E. (2000). Low glycaemic-index foods. The British Journal of Nutrition, 83(Suppl 1), S149–S155.PubMedPubMedCentralGoogle Scholar
  13. Bornet, F., Bizais, Y., Bruley Des Varannes, S., Pouliquen, B., Delort Laval, J., & Galmiche, J. (1990). Gastric emptying rate controls plasma responses to starch in healthy humans. British Journal of Nutrition, 63, 207–220.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bornhorst, G. M., Ferrua, M. J., & Singh, R. P. (2015). A proposed food breakdown classification system to predict food behavior during gastric digestion. Journal of Food Science, 80(5), R924–R934.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bornhorst, G. M., & Singh, R. P. (2012). Bolus formation and disintegration during digestion of food carbohydrates. Comprehensive Reviews in Food Science and Food Safety, 11(2), 101–118.CrossRefGoogle Scholar
  16. Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in vitro bread bolus digestion with varying oral and gastric digestion parameters. Food Biophysics, 8(1), 50–59.CrossRefGoogle Scholar
  17. Bornhorst, G. M., & Singh, R. P. (2014). Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annual Review of Food Science and Technology, 5, 111–132.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bouchon, P., & Aguilera, J. M. (2001). Microstructural analysis of frying potatoes. International Journal of Food Science and Technology, 36, 669–676.CrossRefGoogle Scholar
  19. Bouchon, P., & Pyle, D. L. (2005). Modelling oil absorption during post-frying cooling I: Model development. Food and Bioproducts Processing, 83(4), 253–260 Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0960308505704971CrossRefGoogle Scholar
  20. Brennan, C. S., Samyue, E., & Abbot, N. (2004). Evaluation of starch degradation and textural characteristics of dietary fiber enriched biscuits. International Journal of Food Properties, 7(3), 647–657.CrossRefGoogle Scholar
  21. Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α-amylase and starch digestion: An interesting marriage. Starch/Staerke, 63(7), 395–405.CrossRefGoogle Scholar
  22. Chen, J., Khandelwal, N., Liu, Z., & Funami, T. (2013). Influences of food hardness on the particle size distribution of food boluses. Archives of Oral Biology, 58(3), 293–298.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen, P., Wang, K., Kuang, Q., Zhou, S., Wang, D., & Liu, X. (2016). Understanding how the aggregation structure of starch affects its gastrointestinal digestion rate and extent. International Journal of Biological Macromolecules, 87, 28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Contardo, I., Parada, J., Leiva, A., & Bouchon, P. (2016). The effect of vacuum frying on starch gelatinization and its in vitro digestibility in starch-gluten matrices. Food Chemistry, 197, 353–358. https://doi.org/10.1016/j.foodchem.2015.10.028CrossRefPubMedPubMedCentralGoogle Scholar
  25. Contardo, I., Villalón, M., & Bouchon, P. (2018). In vivo study on the slow release of glucose in vacuum fried matrices. Food Chemistry, 245, 432–438.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cottrell, J. E., Duffus, C. M., Paterson, L., & Mackay, G. R. (1995). Properties of potato starch: Effects of genotype and growing conditions. Phytochemistry, 40(4), 1057–1064.CrossRefGoogle Scholar
  27. Cui, R., & Oates, C. G. (1999). The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chemistry, 65(4), 417–425.CrossRefGoogle Scholar
  28. De la Hera, E., Rosell, C. M., & Gomez, M. (2014). Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chemistry, 151, 526–531.PubMedCrossRefPubMedCentralGoogle Scholar
  29. De Sales, P. M., De Souza, P. M., Simeoni, L. A., Magalhães, P. D. O., & Silveira, D. (2012). α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. Journal of Pharmacy and Pharmaceutical Sciences, 15(1), 141–183.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Delcour, J. A., Vansteelandt, J., Hythier, M. C., Abécassis, J., Sindic, M., & Deroanne, C. (2000). Fractionation and reconstitution experiments provide insight into the role of starch gelatinization and pasting properties in pasta quality. Journal of Agricultural and Food Chemistry, 48(9), 3774–3778.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dhital, S., Dolan, G., Stokes, J. R., & Gidley, M. J. (2014). Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides. Food & Function, 5(3), 579–586.CrossRefGoogle Scholar
  32. Dhital, S., Warren, F. J., Butterworth, P. J., Ellis, P. R., & Gidley, M. J. (2017). Mechanisms of starch digestion by α-amylase—Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57(5), 875–892.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dona, A. C., Pages, G., Gilbert, R. G., & Kuchel, P. W. (2010). Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers, 80(3), 599–617.CrossRefGoogle Scholar
  34. Drechsler, K. C., & Ferrua, M. J. (2016). Modelling the breakdown mechanics of solid foods during gastric digestion. Food Research International, 88, 181–190.CrossRefGoogle Scholar
  35. Dueik, V., & Bouchon, P. (2011). Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends. Journal of Food Science, 76(2), 188–195.CrossRefGoogle Scholar
  36. Ekström, L. M. N. K., Henningsson Bok, E. A. E., Sjöö, M. E., & Östman, E. M. (2017). Oat β-glucan containing bread increases the glycaemic profile. Journal of Functional Foods, 32, 106–111.CrossRefGoogle Scholar
  37. Eliasson, A. (1980). Effect of water content on the gelatinization of wheat starch. Starch – Stärke, 32(8), 270–272.CrossRefGoogle Scholar
  38. Engelen, L., Fontijn-Tekamp, A., & Van Der Bilt, A. (2005). The influence of product and oral characteristics on swallowing. Archives of Oral Biology, 50(8), 739–746.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Englyst, K. N., Englyst, H. N., Hudson, G. J., Cole, T. J., & Cummings, J. H. (1999). Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. The American Journal of Clinical Nutrition, 69(3), 448–454.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(2), S33–S50.PubMedPubMedCentralGoogle Scholar
  41. Fabek, H., Messerschmidt, S., Brulport, V., & Goff, H. D. (2014). The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocolloids, 35, 718–726.CrossRefGoogle Scholar
  42. Fardet, A., Hoebler, C., Bouchet, B., Gallant, D. J., & Barry, J. L. (1998). Involvement of the protein network in the in vitro degradation of starch from spaghetti and lasagne: A microscopic and enzymic study. Journal of Cereal Science, 27, 133–145.CrossRefGoogle Scholar
  43. Feinglos, M. N., Gibb, R. D., Ramsey, D. L., Surwit, R. S., & McRorie, J. W. (2013). Psyllium improves glycemic control in patients with type-2 diabetes mellitus. Bioactive Carbohydrates and Dietary Fibre, 1(2), 156–161.CrossRefGoogle Scholar
  44. Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395–402.CrossRefGoogle Scholar
  45. Fuentes-Zaragoza, E., Riquelme-Navarrete, M. J., Sánchez-Zapata, E., & Pérez-Álvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43(4), 931–942.CrossRefGoogle Scholar
  46. Gao, J., Wong, J. X., Lim, J. C. S., Henry, J., & Zhou, W. (2015). Influence of bread structure on human oral processing. Journal of Food Engineering, 167, 147–155.CrossRefGoogle Scholar
  47. Garayo, J., & Moreira, R. (2002). Vacuum frying of potato chips. Journal of Food Engineering, 55(2), 181–191.CrossRefGoogle Scholar
  48. García-Alonso, A., & Goñi, I. (2000). Effect of processing on potato starch: In vitro availability and glycaemic index. Die Nahrung, 44(1), 19–22.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437.CrossRefGoogle Scholar
  50. Gouseti, O., Jaime-Fonseca, M. R., Fryer, P. J., Mills, C., Wickham, M. S. J., & Bakalis, S. (2014). Hydrocolloids in human digestion: Dynamic in-vitro assessment of the effect of food formulation on mass transfer. Food Hydrocolloids, 42(P3), 378–385.CrossRefGoogle Scholar
  51. Guyton, A., & Hall, J. (2006). Textbook of medical physiology. Physiology (11th ed.). Philadelphia, PA: Elsevier Saunders.Google Scholar
  52. Hasjim, J., Ai, Y., & Jane, J. (2013). Novel applications of amylose-lipid complex as resistant starch type 5. In Y.‐. C. Shi & C. C. Maningat (Eds.), Resistant starch (pp. 79–94). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  53. Heaton, K. W., Marcus, S. N., Emmet, P. M., & Bolton, C. H. (1988). Particle-size of wheat, maize, and oat test meals – Effects on plasma-glucose and insulin responses and on the rate of starch digestion in vitro. American Journal of Clinical Nutrition, 47(4), 675–682.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Heo, S. J., Hwang, J. Y., Choi, J. I., Han, J. S., Kim, H. J., & Jeon, Y. J. (2009). Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent a-glucosidase and a-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology, 615(1–3), 252–256.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hesso, N., Loisel, C., Chevallier, S., Le-Bail, A., Queveau, D., Pontoire, B., et al. (2015). Monitoring cake baking by studying different ingredient interactions: From a model system to a real system. Food Hydrocolloids, 51, 7–15.CrossRefGoogle Scholar
  56. Hoebler, C., Devaux, M., Karinthi, A., Belleville, C., & Barry, J. (2000). Particle size of solid food after human mastication and in vitro simulation of oral breakdown. International Journal of Food Sciences and Nutrition, 51, 353–366.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hoebler, C., Karinthi, A., Devaux, M. F., Guillon, F., Gallant, D. J., Bouchet, B., et al. (1998). Physical and chemical transformations of cereal food during oral digestion in human subjects. British Journal of Nutrition, 80(5), 429–436.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Holm, J., Lundquist, J., Björck, I., Eliasson, A.-C., & Asp, N.-G. (1988). Degree in vitro, of starch gelatinization, and metabolic response in rats. American Journal of Clinical Nutrition, 47, 1010–1016.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jaime-Fonseca, M. R., Gouseti, O., Fryer, P. J., Wickham, M. S. J., & Bakalis, S. (2016). Digestion of starch in a dynamic small intestinal model. European Journal of Nutrition, 55(8), 2377–2388.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jenkins, A. L., Jenkins, D. J. A., Zdravkovic, U., Würsch, P., & Vuksan, V. (2002). Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. European Journal of Clinical Nutrition, 56(7), 622–628.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kim, E., Petrie, J., Motoi, L., Morgenstern, M., Sutton, K., Mishra, S., et al. (2008). Effect of structural and physicochemical characteristics of the protein matrix in pasta on in vitro starch digestibility. Food Biophysics, 3(2), 229–234.CrossRefGoogle Scholar
  62. Kong, F., & Singh, R. P. (2008). Disintegration of solid foods in human stomach. Journal of Food Science R: Concise Reviews and Hypotheses in Food Science, 73(5), 67–80.CrossRefGoogle Scholar
  63. Kong, F., & Singh, R. P. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 75(9), E627–E635.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kozu, H., Kobayashi, I., Nakajima, M., Uemura, K., Sato, S., & Ichikawa, S. (2010). Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics, 5(4), 330–336.CrossRefGoogle Scholar
  65. Lankisch, M., Layer, P., Rizza, R. A., & DiMagno, E. P. (1998). Acute postprandial gastrointestinal and metabolic effects of wheat amylase inhibitor (WAI) in normal, obese, and diabetic humans. Pancreas, 17(2), 176–181.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Le Bleis, F., Chaunier, L., Montigaud, P., & Della Valle, G. (2016). Destructuration mechanisms of bread enriched with fibers during mastication. Food Research International, 80, 1–11.CrossRefGoogle Scholar
  68. Lelievre, J., & Liu, H. (1994). A review of thermal analysis studies of starch gelatinization. Thermochimica Acta, 246(2), 309–315.CrossRefGoogle Scholar
  69. Liu, S., Manson, J. E., Stampfer, M. J., Hu, F. B., Giovannucci, E., Colditz, G. A., et al. (2000). A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. American Journal of Public Health, 90(9), 1409–1415.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., & Chou, C. J. (2008). Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. Journal of Medicinal Chemistry, 51(12), 3555–3561.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mackley, M. R., Tock, C., Anthony, R., Butler, S. a., Chapman, G., & Vadillo, D. C. (2013). The rheology and processing behavior of starch and gum-based dysphagia thickeners. Journal of Rheology, 57(6), 1533.CrossRefGoogle Scholar
  72. Mandel, A., & Breslin, P. (2012). High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults 1–3. The Journal of Nutrition, 142, 853–858.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Marciani, L., Gowland, P. a., Spiller, R. C., Manoj, P., Moore, R. J., Young, P., et al. (2001). Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280(6), G1227–G1233.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mariscal, M., & Bouchon, P. (2008). Comparison between atmospheric and vacuum frying of apple slices. Food Chemistry, 107(4), 1561–1569.CrossRefGoogle Scholar
  75. Mennah-Govela, Y. A., & Bornhorst, G. M. (2016). Mass transport processes in orange-fleshed sweet potatoes leading to structural changes during in vitro gastric digestion. Journal of Food Engineering, 191, 48–57.CrossRefGoogle Scholar
  76. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food – An international consensus. Food Function, 5(6), 1113–1124. Retrieved from http://xlink.rsc.org/?DOI=C3FO60702JPubMedCrossRefPubMedCentralGoogle Scholar
  77. Moritaka, H., & Nakazawa, F. (2009). The rheological and swallowing properties of rice starch. Food Science Research, 15(2), 133–140.CrossRefGoogle Scholar
  78. Nalin, T., Venema, K., Weinstein, D. A., de Souza, C. F. M., Perry, I. D. S., van Wandelen, M. T. R., et al. (2015). In vitro digestion of starches in a dynamic gastrointestinal model: An innovative study to optimize dietary management of patients with hepatic glycogen storage diseases. Journal of Inherited Metabolic Disease, 38(3), 529–536.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Nyambe-Silavwe, H., & Williamson, G. (2016). Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: A randomised, controlled, single-blind, cross-over intervention. British Journal of Nutrition, 116(3), 443–450.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Oh, I. K., Bae, I. Y., & Lee, H. G. (2014). In vitro starch digestion and cake quality: Impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 63, 98–103.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ohishi, K., Kasai, M., Shimada, A., & Hatae, K. (2007). Effects of acetic acid on the rice gelatinization and pasting properties of rice starch during cooking. Food Research International, 40(2), 224–231.CrossRefGoogle Scholar
  82. Ovalle, N., Cortés, P., & Bouchon, P. (2013). Understanding microstructural changes of starch during atmospheric and vacuum heating in water and oil through online in situ vacuum hot-stage microscopy. Innovative Food Science & Emerging Technologies, 17, 135–143.CrossRefGoogle Scholar
  83. Parada, J., & Aguilera, J. M. (2011a). Microstructure, mechanical properties, and starch digestibility of a cooked dough made with potato starch and wheat gluten. LWT – Food Science and Technology, 44(8), 1739–1744.CrossRefGoogle Scholar
  84. Parada, J., & Aguilera, J. M. (2011b). Review: Starch matrices and the glycemic response. Food Science and Technology International, 17(3), 187–204.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Parada, J., & Santos, J. L. (2016). Interactions between starch, lipids, and proteins in foods: Microstructure control for glycemic response modulation. Critical Reviews in Food Science and Nutrition, 56(14), 2362–2369.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pareyt, B., & Delcour, J. A. (2008). The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: A review on sugar-snap cookies. Critical Reviews in Food Science and Nutrition, 48(November 2014), 824–839.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ranawana, V., Monro, J. A., Mishra, S., & Henry, C. J. K. (2010). Degree of particle size breakdown during mastication may be a possible cause of interindividual glycemic variability. Nutrition Research, 30(4), 246–254.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Robin, F., Heindel, C., Pineau, N., Srichuwong, S., & Lehmann, U. (2016). Effect of maize type and extrusion-cooking conditions on starch digestibility profiles. International Journal of Food Science & Technology, 51(6), 1319–1326.CrossRefGoogle Scholar
  89. Roder, N., Gerard, C., Verel, A., Bogracheva, T. Y., Hedley, C. L., Ellis, P. R., et al. (2009). Factors affecting the action of α-amylase on wheat starch: Effects of water availability. An enzymic and structural study. Food Chemistry, 113(2), 471–478.CrossRefGoogle Scholar
  90. Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch – A review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.CrossRefGoogle Scholar
  91. Schirmer, M., Zeller, J., Krause, D., Jekle, M., & Becker, T. (2014). In situ monitoring of starch gelatinization with limited water content using confocal laser scanning microscopy. European Food Research and Technology, 239(2), 247–257.CrossRefGoogle Scholar
  92. Seneviratne, H. D., & Biliaderis, C. G. (1991). Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science, 13(2), 129–143.CrossRefGoogle Scholar
  93. Singh, N., Singh, J., Kaur, L., Sodhi, N., & Gill, B. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219–231.CrossRefGoogle Scholar
  94. Slaughter, S. L., Butterworth, P. J., & Ellis, P. R. (2001). Mechanisms of the action of porcine pancreatic α-amylase on native and heat treated starches from various botanical sources. Starch – Advances in Structure and Function, 1525, 110–115.Google Scholar
  95. Slavin, J. (2004). Whole grains and human health. Nutrition Research Reviews, 17(1), 99–110.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes – A boon to human nutrition. Trends in Food Science and Technology, 14(12), 507–518.CrossRefGoogle Scholar
  97. Tharanathan, M., & Tharanathan, R. N. (2001). Resistant starch in wheat-based products: Isolation and characterisation. Journal of Cereal Science, 34, 73–84.CrossRefGoogle Scholar
  98. Thondre, P. S., Shafat, A., & Clegg, M. E. (2013). Molecular weight of barley b-glucan influences energy expenditure, gastric emptying and glycaemic response in human subjects. British Journal of Nutrition, 110, 2173–2179.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031–1064.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Van Wey, A. S., Cookson, A. L., Roy, N. C., McNabb, W. C., Soboleva, T. K., Wieliczko, R. J., et al. (2014). A mathematical model of the effect of pH and food matrix composition on fluid transport into foods: An application in gastric digestion and cheese brining. Food Research International, 57, 34–43.CrossRefGoogle Scholar
  101. Villemejane, C., Wahl, R., Aymard, P., Denis, S., & Michin, C. (2015). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): Viscosity measurement and prediction. Food Chemistry, 182, 55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wang, S., Luo, H., Zhang, J., Zhang, Y., He, Z., & Wang, S. (2014). Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. Journal of Agricultural and Food Chemistry, 62(16), 3636–3643.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Wang, J. P., Zeng, A. W., Liu, Z., & Yuan, X. G. (2006). Kinetics of glucoamylase hydrolysis of corn starch. Journal of Chemical Technology and Biotechnology, 81(4), 727–729.CrossRefGoogle Scholar
  104. Warren, F. J., Zhang, B., Waltzer, G., Gidley, M. J., & Dhital, S. (2015). The interplay of alpha-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydrate Polymers, 117, 192–200.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wickham, M. J. S., Faulks, R. M., Mann, J., & Mandalari, G. (2012). The design, operation, and application of a dynamic gastric model. Dissolution Technologies, 19(3), 15–22.CrossRefGoogle Scholar
  106. Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24(2), 115–119.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Williamson, G., Belshaw, N. J., Self, D. J., Noel, T. R., Ring, S. G., Cairns, P., et al. (1992). Hydrolysis of A- and B-type crystalline polymorphs of starch by a-amylase, b-amylase and glucoamylase 1. Carbohydrate Polymers, 18(3), 179–187.CrossRefGoogle Scholar
  108. Würsch, P., & Pi-Sunyer, X. (1997). The role of viscous soluble fiber in the metabolic control of diabetes. Diabetes Care, 20(11), 1774–1780.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zhang, G., & Hamaker, B. R. (2016). The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition, 57, 3807–3817.CrossRefGoogle Scholar
  110. Zhang, P., Whistler, R., BeMiller, J., & Hamaker, B. (2005). Banana starch: Production, physicochemical properties, and digestibility – A review. Carbohydrate Polymers, 59(4), 443–458.CrossRefGoogle Scholar
  111. Zhu, Y., Hsu, W. H., & Hollis, J. H. (2013). The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate. PLoS One, 8(6), 6–11.CrossRefGoogle Scholar
  112. Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology, 43(8), 1410–1423.CrossRefGoogle Scholar
  113. Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(December 2001), 782–787.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical and Bioprocess EngineeringPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations