Advertisement

Starchy Foods: Human Nutrition and Public Health

  • Cathrina Hanse Edwards
  • Frederick James WarrenEmail author
Chapter

Abstract

Starch is the largest source of energy in our diet and also provides an essential supply of exogenous glucose to act as fuel for our brains and red blood cells. Despite this key role in human nutrition, in recent years starchy foods have come to be viewed negatively, as consumption of large quantities of heavily processed starch has been epidemiologically linked to a number of negative health outcomes such as diabetes and obesity.

A key aspect of the role dietary starch plays in the development of these conditions is the physical structure of the starch and the rate and extent of its digestion in the digestive tract. Starches with structures which are more rapidly digested are those most closely linked with the development of disease. Conducting human intervention trials with starchy foods is expensive and time consuming, so a range of in vitro digestion models have been developed as alternatives. There have been significant advances in these models, both in terms of how closely they mimic key aspects of the human digestive system and in terms of kinetic analysis of data obtained from these models.

In this book chapter, the main models used for measuring starch digestibility, and their uses, are reviewed. Additionally, these in vitro approaches are contrasted with in vivo methods for acute interventions, as well as the findings of chronic studies in starchy food consumption.

Keywords

Starch Digestion Glycaemic index Kinetics Diabetes Obesity Diet Cardiovascular disease 

References

  1. Aronoff, S. L., Berkowitz, K., Shreiner, B., & Want, L. (2004). Glucose metabolism and regulation: Beyond insulin and glucagon. Diabetes Spectrum, 17(3), 183–190.Google Scholar
  2. Atkinson, F. S., Foster-Powell, K., & Brand-Miller, J. C. (2008). International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31(12), 2281–2283.PubMedPubMedCentralGoogle Scholar
  3. Baldwin, A. J., Egan, D. L., Warren, F. J., Barker, P. D., Dobson, C. M., Butterworth, P. J., et al. (2015). Investigating the mechanisms of amylolysis of starch granules by solution-state NMR. Biomacromolecules, 16(5), 1614–1621.PubMedPubMedCentralGoogle Scholar
  4. Ballance, S., Sahlstrøm, S., Lea, P., Nagy, N. E., Andersen, P. V., Dessev, T., et al. (2013). Evaluation of gastric processing and duodenal digestion of starch in six cereal meals on the associated glycaemic response using an adult fasted dynamic gastric model. European Journal of Nutrition, 52(2), 799–812.PubMedGoogle Scholar
  5. Bijttebier, A., Goesaert, H., & Delcour, J. (2008). Amylase action pattern on starch polymers. Biologia, 63(6), 989–999.Google Scholar
  6. Bornet, F. R. J., Jardy-Gennetier, A.-E., Jacquet, N., & Stowell, J. (2007). Glycaemic response to foods: Impact on satiety and long-term weight regulation. Appetite, 49(3), 535–553.PubMedGoogle Scholar
  7. Bornhorst, G. M. (2017). Gastric mixing during food digestion: Mechanisms and applications. Annual Review of Food Science and Technology, 8, 523–542.PubMedGoogle Scholar
  8. Brand-Miller, J., Hayne, S., Petocz, P., & Colagiuri, S. (2003). Low-glycemic index diets in the management of diabetes. A meta-analysis of randomized controlled trials. Diabetes Care, 26(8), 2261–2267.PubMedGoogle Scholar
  9. Brouns, F., Bjorck, I., Frayn, K. N., Gibbs, A. L., Lang, V., Slama, G., et al. (2008). Glycaemic index methodology. Nutrition Research Reviews, 18(1), 145–171.Google Scholar
  10. Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α-amylase and starch digestion: An interesting marriage. Starch-Stärke, 63(7), 395–405.Google Scholar
  11. Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H., & Ellis, P. R. (2012). Analysis of starch amylolysis using plots for first-order kinetics. Carbohydrate Polymers, 87(3), 2189–2197.Google Scholar
  12. Carpenter, D., Dhar, S., Mitchell, L. M., Fu, B., Tyson, J., Shwan, N. A., et al. (2015). Obesity, starch digestion and amylase: Association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Human Molecular Genetics, 24(12), 3472–3480.PubMedPubMedCentralGoogle Scholar
  13. Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydrate Research, 227, 103–112.Google Scholar
  14. Crapo, P. A., Reaven, G., & Olefsky, J. (1977). Postprandial plasma-glucose and-insulin responses to different complex carbohydrates. Diabetes, 26(12), 1178–1183.PubMedGoogle Scholar
  15. DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., et al. (2015). Type 2 diabetes mellitus. Nature Reviews. Disease Primers, 1, 15019–15019.PubMedGoogle Scholar
  16. Dhital, S., Warren, F. J., Butterworth, P. J., Ellis, P. R., & Gidley, M. J. (2017). Mechanisms of starch digestion by α-amylase—Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 57(5), 875–892.PubMedGoogle Scholar
  17. Diaz-Sotomayor, M., Quezada-Calvillo, R., Avery, S. E., Chacko, S. K., Yan, L.-k., Lin, A. H.-M., et al. (2013). Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. Journal of Pediatric Gastroenterology and Nutrition, 57(6), 704–712.PubMedGoogle Scholar
  18. Dyer, J., Salmon, K., Zibrik, L., & Shirazi-Beechey, S. (2005). Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. London: Portland Press Limited.Google Scholar
  19. Edwards, C. H., Grundy, M. M., Grassby, T., Vasilopoulou, D., Frost, G. S., Butterworth, P. J., et al. (2015). Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: A randomized controlled trial in healthy ileostomy participants. The American Journal of Clinical Nutrition, 102(4), 791–800.PubMedPubMedCentralGoogle Scholar
  20. Edwards, C. H., Warren, F. J., Milligan, P. J., Butterworth, P. J., & Ellis, P. R. (2014). A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food & Function, 5(11), 2751–2758.Google Scholar
  21. Efeyan, A., Comb, W. C., & Sabatini, D. M. (2015). Nutrient sensing mechanisms and pathways. Nature, 517(7534), 302.PubMedPubMedCentralGoogle Scholar
  22. Egger, L., Ménard, O., Baumann, C., Duerr, D., Stoffers, S., Schlegel, P. (2017). Digestion of proteins in milk: Comparing different in vitro systems with in vivo data. 5. International Conference on Food Digestion.Google Scholar
  23. Englyst, H., & Cummings, J. (1987). Resistant starch, a ‘new’ food component: A classification of starch for nutritional purposes. In I. D. Morton (Ed.), Cereals in a European context. Chichester: Ellis Horwood.Google Scholar
  24. Englyst, H. N., Kingman, S., & Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, S33–S50.PubMedPubMedCentralGoogle Scholar
  25. Englyst, H., Wiggins, H., & Cummings, J. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 107(1272), 307–318.PubMedGoogle Scholar
  26. Falchi, M., Moustafa, J. S. E.-S., Takousis, P., Pesce, F., Bonnefond, A., Andersson-Assarsson, J. C., et al. (2014). Low copy number of the salivary amylase gene predisposes to obesity. Nature Genetics, 46(5), 492–497.PubMedGoogle Scholar
  27. FAO. (1998). Carbohydrates in human nutrition (Report of a Joint FAO/WHO Report, paper 66). Rome: FAO.Google Scholar
  28. Fässler, C., Arrigoni, E., Venema, K., Hafner, V., Brouns, F., & Amadò, R. (2006). Digestibility of resistant starch containing preparations using two in vitro models. European Journal of Nutrition, 45(8), 445–453.PubMedPubMedCentralGoogle Scholar
  29. Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition, 76(1), 5–56.PubMedGoogle Scholar
  30. Goff, L. M., Cowland, D. E., Hooper, L., & Frost, G. S. (2013). Low glycaemic index diets and blood lipids: A systematic review and meta-analysis of randomised controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 23(1), 1–10.PubMedGoogle Scholar
  31. Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437.Google Scholar
  32. Gray, G. M. (1970). Carbohydrate digestion and absorption. Gastroenterology, 58(1), 96–107.PubMedGoogle Scholar
  33. Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30(11), 591–600.PubMedPubMedCentralGoogle Scholar
  34. Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. The Quarterly Review of Biology, 90(3), 251–268.PubMedGoogle Scholar
  35. Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280(2), 309–316.PubMedPubMedCentralGoogle Scholar
  36. Janeček, Š., Svensson, B., & MacGregor, E. (2003). Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. The FEBS Journal, 270(4), 635–645.Google Scholar
  37. Jenkins, D. J. A., Kendall, C. W. C., Augustin, L. S. A., Franceschi, S., Hamidi, M., Marchie, A., et al. (2002). Glycemic index: Overview of implications in health and disease. The American Journal of Clinical Nutrition, 76, 266S–273S.PubMedGoogle Scholar
  38. Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., et al. (1981). Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362–366.PubMedGoogle Scholar
  39. Lee, B.-H., Rose, D. R., Lin, A. H.-M., Quezada-Calvillo, R., Nichols, B. L., & Hamaker, B. R. (2016). Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. Journal of Agricultural and Food Chemistry, 64(33), 6487–6494.PubMedGoogle Scholar
  40. Lin, A. H.-M., Hamaker, B. R., & Nichols Jr., B. L. (2012). Direct starch digestion by sucrase-isomaltase and maltase-glucoamylase. Journal of Pediatric Gastroenterology and Nutrition, 55, S43–S45.PubMedGoogle Scholar
  41. Liu, S., Willett, W. C., Stampfer, M. J., Hu, F. B., Franz, M., Sampson, L., et al. (2000). A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. The American Journal of Clinical Nutrition, 71(6), 1455–1461.PubMedGoogle Scholar
  42. Mace, O. J., Affleck, J., Patel, N., & Kellett, G. L. (2007). Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. The Journal of Physiology, 582(1), 379–392.PubMedPubMedCentralGoogle Scholar
  43. Mandel, A. L., des Gachons, C. P., Plank, K. L., Alarcon, S., & Breslin, P. A. (2010). Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch. PLoS One, 5(10), e13352.PubMedPubMedCentralGoogle Scholar
  44. Mathers, C., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442.PubMedPubMedCentralGoogle Scholar
  45. Mente, A., de Koning, L., Shannon, H. S., & Anand, S. S. (2009). A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Archives of Internal Medicine, 169(7), 659–669.PubMedGoogle Scholar
  46. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food – An international consensus. Food & Function, 5(6), 1113–1124.Google Scholar
  47. Minekus, M., Marteau, P., & Havenaar, R. (1995). Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals, 23, 197–209.Google Scholar
  48. Murphy, K. G., & Bloom, S. R. (2006). Gut hormones and the regulation of energy homeostasis. Nature, 44, 854–859.Google Scholar
  49. Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J., & Zuker, C. S. (2001). Mammalian sweet taste receptors. Cell, 106(3), 381–390.PubMedGoogle Scholar
  50. Otto, H., & Niklas, L. (1980). Different glycemic responses to carbohydrate-containing foods. Implications for the dietary treatment of diabetes mellitus. Medicine & Hygiene (Geneve), 38, 3424–3429.Google Scholar
  51. Qian, M., Haser, R., & Payan, F. (1995). Carbohydrate binding sites in a pancreatic α-amylase-substrate complex, derived from X-ray structure analysis at 2.1 Å resolution. Protein Science, 4(4), 747–755.PubMedPubMedCentralGoogle Scholar
  52. Ring, S. G., Gee, J. M., Whittam, M., Orford, P., & Johnson, I. T. (1988). Resistant starch: Its chemical form in foodstuffs and effect on digestibility in vitro. Food Chemistry, 28(2), 97–109.Google Scholar
  53. Röder, P. V., Geillinger, K. E., Zietek, T. S., Thorens, B., Koepsell, H., & Daniel, H. (2014). The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One, 9(2), e89977.PubMedPubMedCentralGoogle Scholar
  54. Rydberg, E. H., Li, C., Maurus, R., Overall, C. M., Brayer, G. D., & Withers, S. G. (2002). Mechanistic analyses of catalysis in human pancreatic α-amylase: Detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry, 41(13), 4492–4502.PubMedGoogle Scholar
  55. Sandstedt, R., & UEDA, S. (1969). Alpha-amylase adsorption on raw starch and its relation to raw starch digestion. Journal of the Technological Society of Starch, 17(1), 215–228.Google Scholar
  56. Schwimmer, S. (1945). The role of maltase in the enzymolysis of raw starch. Journal of Biological Chemistry, 161(1), 219–234.PubMedGoogle Scholar
  57. Slaughter, S. L., Ellis, P. R., & Butterworth, P. J. (2001). An investigation of the action of porcine pancreatic α-amylase on native and gelatinised starches. Biochimica et Biophysica Acta (BBA)-General Subjects, 1525(1), 29–36.Google Scholar
  58. Tahir, R., Ellis, P. R., Bogracheva, T. Y., Meares-Taylor, C., & Butterworth, P. J. (2010). Study of the structure and properties of native and hydrothermally processed wild-type, lam and r variant pea starches that affect amylolysis of these starches. Biomacromolecules, 12(1), 123–133.PubMedGoogle Scholar
  59. Thondre, P. S., & Henry, C. J. K. (2011). The glycaemic index: Concept, recent developments and its impact on diabetes and obesity. London: Smith-Gordon.Google Scholar
  60. Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S., & Marzorati, M. (2015). The simulator of the human intestinal microbial ecosystem (SHIME®). In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, & H. Wichers (Eds.), The impact of food bioactives on health (pp. 305–317). Cham: Springer.Google Scholar
  61. Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155.PubMedGoogle Scholar
  62. Venn, B. J., & Green, T. J. (2007). Glycemic index and glycemic load: Measurement issues and their effect on diet-disease relationships. European Journal of Clinical Nutrition, 61(S1), S122–S131.PubMedGoogle Scholar
  63. Waigh, T. A., Gidley, M. J., Komanshek, B. U., & Donald, A. M. (2000). The phase transformations in starch during gelatinisation: A liquid crystalline approach. Carbohydrate Research, 328(2), 165–176.PubMedGoogle Scholar
  64. Walker, A. W., Ince, J., Duncan, S. H., Webster, L. M., Holtrop, G., Ze, X., et al. (2011). Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal, 5(2), 220.PubMedGoogle Scholar
  65. Warren, F. J., Butterworth, P. J., & Ellis, P. R. (2013). The surface structure of a complex substrate revealed by enzyme kinetics and Freundlich constants for α-amylase interaction with the surface of starch. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(4), 3095–3101.Google Scholar
  66. Warren, F. J., Royall, P. G., Gaisford, S., Butterworth, P. J., & Ellis, P. R. (2011). Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydrate Polymers, 86(2), 1038–1047.Google Scholar
  67. Warren, F. J., Zhang, B., Waltzer, G., Gidley, M. J., & Dhital, S. (2015). The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Carbohydrate Polymers, 117, 192–200.PubMedGoogle Scholar
  68. Wickham, M., Faulks, R., Mann, J., & Mandalari, G. (2012). The design, operation, and application of a dynamic gastric model. Dissolution Technologies, 19(3), 15–22.Google Scholar
  69. Wolever, T. M. S., Jenkins, D. J. A., Vuksan, V., Jenkins, A. L., Buckley, G. C., Wong, G. S., et al. (1992). Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabetic Medicine, 9(5), 451–458.PubMedGoogle Scholar
  70. Ze, X., David, Y. B., Laverde-Gomez, J. A., Dassa, B., Sheridan, P. O., Duncan, S. H., et al. (2015). Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio, 6(5), e01058–e01015.PubMedPubMedCentralGoogle Scholar
  71. Ze, X., Duncan, S. H., Louis, P., & Flint, H. J. (2012). Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal, 6(8), 1535.PubMedPubMedCentralGoogle Scholar
  72. Zhang, X., Caner, S., Kwan, E., Li, C., Brayer, G. D., & Withers, S. G. (2016). Evaluation of the significance of starch surface binding sites on human pancreatic α-amylase. Biochemistry, 55(43), 6000–6009.PubMedGoogle Scholar
  73. Zou, W., Sissons, M., Gidley, M. J., Gilbert, R. G., & Warren, F. J. (2015). Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chemistry, 188, 559–568.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cathrina Hanse Edwards
    • 1
  • Frederick James Warren
    • 1
    Email author
  1. 1.Food and HealthQuadram Institute BioscienceNorwichUK

Personalised recommendations