Advertisement

An Engineering Perspective on Human Digestion

  • Alexander R. Lamond
  • Anja E. M. Janssen
  • Alan Mackie
  • Gail M. Bornhorst
  • Serafim BakalisEmail author
  • Ourania Gouseti
Chapter

Abstract

This chapter reviews the mechanics of human digestion from an engineering viewpoint. First, digestive processes, including mastication, bolus transport and nutrient absorption, are paralleled to unit operations, such as milling, peristaltic pumping and membrane filtration. This allows an engineering analysis of the gut, which includes dimensional analysis and identification of the key parameters and phenomena that determine the rate and extent of food digestion. Then, the use of mathematical models and computational fluid dynamics are discussed for the study of digestive processes, in particular gastric and intestinal flow and mixing.

Keywords

Food digestion Engineering CFD Dimensional analysis Unit operations Flow Mixing Gut 

References

  1. ANSYS® Academic Research.Google Scholar
  2. Barrett, K. E. (2014). Gastrointestinal (GI) physiology. In Reference module in biomedical sciences. https://doi.org/10.1016/B978-0-12-801238-3.00042-8Google Scholar
  3. Bornhorst, G. M., Gouseti, O., Wickham, M. S. J., & Bakalis, S. (2016). Engineering digestion: Multiscale processes of food digestion. Journal of Food Science, 81, R534–R543.CrossRefGoogle Scholar
  4. Bornhorst, G. M., Rutherfurd, S. M., Roman, M. J., Burri, B. J., Moughan, P. J., & Singh, R. P. (2014). Gastric pH distribution and mixing of soft and rigid food particles in the stomach using a dual-marker technique. Food Biophysics, 9, 292–300.CrossRefGoogle Scholar
  5. Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in vitro bread bolus digestion with varying oral and gastric digestion parameters. Food Biophysics, 8, 50–59.CrossRefGoogle Scholar
  6. Catchpole, J. P., & Fulford, G. (1966). Dimensionless groups. Industrial and Engineering Chemistry, 58, 46–60.CrossRefGoogle Scholar
  7. Chen, C., Tang, X., Xiao, Z., Zhou, Y., Jiang, Y., & Fu, S. (2012). Ethanol fermentation kinetics in a continuous and closed-circulating fermentation system with a pervaporation membrane bioreactor. Bioresource Technology, 114, 707–710.CrossRefGoogle Scholar
  8. COMSOL Multiphysics Reference Manual, version 5.3. COMSOL, Inc. Available at: www.comsol.com
  9. Cornish-Bowden, A. (1995). Fundamentals of enzyme kinetics. London: Portland Press Ltd. https://doi.org/10.1016/B978-0-408-10617-7.50007-9CrossRefGoogle Scholar
  10. De Almeida, P. D. V., Grégio, A. M. T., Machado, M. Â. N., De Lima, A. A. S. & Azevedo, L. R. (2008). Saliva composition and functions: A comprehensive review. Journal of Contemporary Dental Practice, 9, 72–80.Google Scholar
  11. De Loubens, C., Lentle, R. G., Hulls, C., Janssen, P. W. M., Love, R. J., & Paul Chambers, J. (2014). Characterisation of mixing in the proximal duodenum of the rat during longitudinal contractions and comparison with a fluid mechanical model based on spatiotemporal motility data. PLoS One, 9, 2–7.CrossRefGoogle Scholar
  12. Ferrua, M. J., Kong, F., & Singh, R. P. (2011). Computational modeling of gastric digestion and the role of food material properties. Trends in Food Science and Technology, 22, 480–491.CrossRefGoogle Scholar
  13. Ferrua, M. J., & Singh, R. P. (2010). Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Journal of Food Science, 75.CrossRefGoogle Scholar
  14. Ferrua, M. J., Xue, Z., & Singh, R. P. (2014). Dynamics of gastric contents during digestion-computational and rheological considerations. In M. Boland, M. Golding, & H. Singh (Eds.), Food structures, digestion and health (pp. 319–360). Cambridge, MA: Elsevier. https://doi.org/10.1016/B978-0-12-404610-8.00012-8CrossRefGoogle Scholar
  15. Geankoplis, C. J. (1993). Transport processes and unit operations (pp. 1–937). Englewood Cliffs, NJ: Prentice-Hall International.Google Scholar
  16. Green, D. W., & Perry, R. H. (2008). Perry’s chemical engineer’s handbook. New York: McGraw-Hill.Google Scholar
  17. Guyton, A. C., & Hall, J. E. (2006). Textbook of medical physiology. Amsterdam: Elsevier Saunders. https://doi.org/10.1136/pgmj.51.599.683-cCrossRefGoogle Scholar
  18. Hutchings, S. C., Foster, K. D., Bronlund, J. E., Lentle, R. G., Jones, J. R., & Morgenstern, M. P. (2011). Mastication of heterogeneous foods: Peanuts inside two different food matrices. Food Quality and Preference, 22, 332–339.CrossRefGoogle Scholar
  19. Hutchings, J. B., & Lillford, P. J. (1988). The perception of food texture – The philosophy of the breakdown path. Journal of Texture Studies, 19, 103–115.CrossRefGoogle Scholar
  20. Kondjoyan, A., Daudin, J. D., & Santé-Lhoutellier, V. (2015). Modelling of pepsin digestibility of myofibrillar proteins and of variations due to heating. Food Chemistry, 172, 265–271.CrossRefGoogle Scholar
  21. Lentle, R. G., Janssen, P. W. M., DeLoubens, C., Lim, Y. F., Hulls, C., & Chambers, P. (2013). Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterology and Motility, 25, 881–888.CrossRefGoogle Scholar
  22. Liedberg, B., & Öwall, B. (1995). Oral bolus kneading and shaping measured with chewing gum. Dysphagia, 10, 101–106.CrossRefGoogle Scholar
  23. Logan, J. D., Joern, A., & Wolesensky, W. (2002). Location, time, and temperature dependence of digestion in simple animal tracts. Journal of Theoretical Biology, 216, 5–18.CrossRefGoogle Scholar
  24. Love, R. J., Lentle, R. G., Asvarujanon, P., Hemar, Y., & Stafford, K. J. (2013). An expanded finite element model of the intestinal mixing of digesta. Food Digest, 4, 26–35.CrossRefGoogle Scholar
  25. Luo, Q. (2018). In vitro gastric digestion of protein-based structured food – An engineering approach. Wageningen: Wageningen University.Google Scholar
  26. Marciani, L., Gowland, P. A., Spiller, R. C., Manoj, P., Moore, R. J., Young, P., et al. (2001). Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280, G1227–G1233.CrossRefGoogle Scholar
  27. Marciani, L., Pritchard, S. E., Hellier-Woods, C., Costigan, C., Hoad, C. L., Gowland, P. A., et al. (2013). Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: Novel MRI insights. European Journal of Clinical Nutrition, 67, 754–758.CrossRefGoogle Scholar
  28. McCabe, W. L., Smith, J. C., & Harriott, P. (2005). Unit operations of chemical engineering. New York: McGraw-Hill.Google Scholar
  29. Ni, P. F., Ho, N. F. H., Fox, J. L., Leuenberger, H., & Higuchi, W. I. (1980). Theoretical model studies of intestinal drug absorption V. Non-steady-state fluid flow and absorption. International Journal of Pharmaceutics, 5, 33–47.CrossRefGoogle Scholar
  30. Olthoff, L. W., Van Der Bilt, A., Bosman, F., & Kleizen, H. H. (1984). Distribution of particle sizes in food comminuted by human mastication. Archives of Oral Biology, 29, 899–903.CrossRefGoogle Scholar
  31. Riedlberger, P., & Weuster-Botz, D. (2012). New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresource Technology, 106, 138–146.CrossRefGoogle Scholar
  32. Rosin, P., & Rammler, E. (1934). Die Kornzusammensetzung des Mahlgutes im Lichte der Wahrscheinlichkeitslehre. Kolloid-Zeitschrift, 67, 16–26.CrossRefGoogle Scholar
  33. Shama, F., Parkinson, C., & Sherman, P. (1973). Identification of stimuli controlling the sensory evaluation of viscosity I. Non-oral methods. Journal of Texture Studies, 4, 102–110.CrossRefGoogle Scholar
  34. Système international d’unités (SI). (1960). In The 11th Conférence Générale des Poids et Mesures (CGPM).Google Scholar
  35. Van Der Bilt, A., Mojet, J., Tekamp, F. A., & Abbink, J. H. (2010). Comparing masticatory performance and mixing ability. Journal of Oral Rehabilitation, 37, 79–84.CrossRefGoogle Scholar
  36. Wang, Y., Brasseur, J. G., Banco, G. G., Webb, A. G., Ailiani, A. C., & Neuberger, T. (2010). A multiscale lattice Boltzmann model of macro- to micro-scale transport, with applications to gut function. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 368, 2863–2880.CrossRefGoogle Scholar
  37. Whitehead, L., Fell, J. T., Collett, J. H., Sharma, H. L., & Smith, A. M. (1998). Floating dosage forms: An in vivo study demonstrating prolonged gastric retention. Journal of Controlled Release, 55, 3–12.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander R. Lamond
    • 1
  • Anja E. M. Janssen
    • 2
  • Alan Mackie
    • 3
  • Gail M. Bornhorst
    • 4
  • Serafim Bakalis
    • 1
    Email author
  • Ourania Gouseti
    • 1
  1. 1.Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamUK
  2. 2.Laboratory of Food Process EngineeringWageningen University and ResearchWageningenThe Netherlands
  3. 3.School of Food Science and NutritionUniversity of LeedsLeedsUK
  4. 4.Biological and Agricultural EngineeringUniversity of California DavisDavisUSA

Personalised recommendations