Advertisement

Review and Epilogue

  • Christopher G. ProvatidisEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 256)

Abstract

In this chapter, we summarize the most important issues which we expect that the reader should have learned from the previous chapters. We repeat the six most important CAGD interpolations, and then we sketch a draft picture on the evolution of the computational methods which are based on the first five of them (older than isoGeometric Analysis). As the author happened to have been involved in these older CAD-based methodologies since 1982 and has somehow contributed in a large part of the whole CAE spectrum (FEM, BEM, and global collocation), the short history of this research is given from his point of view; a full list of the sixty papers, properly classified (in FEM, BEM, and collocation categories), is given in Appendix. In some places, the text is inspired by self-criticism. We believe that the compact information provided in this chapter, as well as the details in the whole book, will strengthen and broaden the horizon of researchers and postgraduate students in the field of Computational Mechanics. In more detail, we anticipate that the gap between CAD and CAE approaches and communities will be further reduced, bridging the older with the contemporary ideas.

Keywords

Review Coons–Gordon Personal view Tensor-product CAD/FEA integration Overall findings Epilogue 

References

  1. 1.
    Bathe K-J (1982) Finite element procedures in engineering analysis. Prentice-Hall, New JerseyGoogle Scholar
  2. 2.
    Boender E, Bronsvoort WF, Post FH (1994) Finite-element mesh generation from constructive-solid-geometry models. Comput Aided Des 26(5):379–392zbMATHCrossRefGoogle Scholar
  3. 3.
    Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Meth Eng 87:15–47zbMATHCrossRefGoogle Scholar
  4. 4.
    Buffa A, Sangalli G (2012) Isogeometric analysis: a new paradigm in the numerical approximation of PDEs: Cetraro, Italy 2012. Lecture notes in mathematics. Springer, BerlinGoogle Scholar
  5. 5.
    Cavendish JC (1972) Collocation methods for elliptic and parabolic boundary value problems. Ph.D. dissertation, University of Pittsburgh, USAGoogle Scholar
  6. 6.
    Cavendish JC, Hall CA (1974) L∞-convergence of collocation and Galerkin approximations to linear two-point parabolic problems. Aequationes Math 11(2–3):230–249MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cavendish JC, Hall CA (1984) A new class of transitional blended finite elements for the analysis of solid structures. Int J Numer Methods Eng 28:241–253zbMATHCrossRefGoogle Scholar
  8. 8.
    Cavendish JC, Gordon WJ, Hall CA (1976) Ritz-Galerkin approximations in blending function spaces. Numer Math 26:155–178MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cavendish JC, Gordon WJ, Hall CA (1977) Substructured macro elements based on locally blending interpolation. Int J Numer Methods Eng 11:1405–1421Google Scholar
  10. 10.
    Cavendish JC, Hall CA, Zienkiewicz OC (1978) Blended infinite elements for parabolic boundary value problems. Int J Numer Methods Eng 12(12):1841–1851MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cavendish JC, Frey WH, Marin SP (1991) Feature-based design and finite element mesh generation for functional surfaces. Adv Eng Softw 13(5–6):226–237zbMATHCrossRefGoogle Scholar
  12. 12.
    Cendes ZJ (1991) Vector finite elements for electromagnetic field computation. IEEE Trans Magn 27(5):3958–3966CrossRefGoogle Scholar
  13. 13.
    Coons SA (1964) Surfaces for computer aided design of space form. Project MAC, MIT (1964), revised for MAC-TR-41 (1967). National Technical Information Service (CFSTI), Springfield, VA, USA. Available online: http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-041.pdf
  14. 14.
    Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkGoogle Scholar
  15. 15.
    Curry HB, Schoenberg IJ (1966) On Pólya frequency functions IV: the fundamental spline functions and their limits. J Anal Math 17(1):71–107MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dahmen W, Dikshit HP, Ojha A (2000) On Wachspress quadrilateral patches. Comput Aided Geom Des 17:879–890MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dasgupta G (2003) Integration within polygonal finite elements. ASCE J Aerosp Eng 16(1):9–18MathSciNetCrossRefGoogle Scholar
  18. 18.
    De Boor C (1966) The method of projections as applied to the numerical solutions of two-point boundary value problems using cubic splines. Ph.D. thesis, University of Michigan. ftp://cs.wisc.edu/Approx/
  19. 19.
    De Boor C (1972) On calculating with B-splines. J Approx Theory 6:50–62Google Scholar
  20. 20.
    De Boor C (2001) A practical guide to splines, revised edn. Springer, New York (Former edn: Applied mathematical sciences, vol 27. Springer, New York, 1978)Google Scholar
  21. 21.
    Dimitriou J (1992) Modeling and discretization of three-dimensional surfaces using Bézier algorithm. Diploma work (MSc thesis), Mechanical Engineering Department, National Technical University of Athens, Greece, Oct 1992. Online available at: http://users.ntua.gr/cprovat/yliko/Dimitriou_Diploma_Work.pdf
  22. 22.
    Farin G, Hoschek J, Kim M-S (2002) Handbook of computer aided geometric design. Elsevier, North HollandzbMATHCrossRefGoogle Scholar
  23. 23.
    Gordon WJ (1969) Spline-blended surface interpolation through curve networks. Indiana Univ Math J 18(10):931–952. Online available at: http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1969/18/18068
  24. 24.
    Gordon WJ (1971) Blending functions methods of bivariate and multivariate interpolation and approximation. SIAM J Numer Anal 8:158–177MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Gordon WJ, Hall CA (1973) Construction of curvilinear co-ordinate systems and application to mesh generation. Int J Numer Methods Eng 7:461–477MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gordon WJ, Hall CA (1973) Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer Math 21:109–112MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gordon WJ, Thiel LC (1982) Transfinite mappings and their application to grid generation. Appl Math Comput 11–12:171–233. In: Thompson JP (ed) Numerical grid generation. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Gregory JA (1983) N-sided surface patches. In: Gregory JA (ed) Mathematics of surfaces. Clarendon Press, pp 217–232Google Scholar
  29. 29.
    Hall CA, Raymund M, Palusamy S (1979) A macro element approach to computing stress intensity factors for three dimensional structures. Int J Fract 15(3):231–245Google Scholar
  30. 30.
    Heege A, Alart P (1996) A frictional contact element for strongly curved contact problems. Int J Numer Methods Eng 39:165–184MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Höllig K (2003) Finite element methods with B-splines. SIAM, PhiladelphiaGoogle Scholar
  32. 32.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Inoue K, Kikuchi Y, Masuyama T (2005) A NURBS finite element method for product shape design. J Eng Des 16(2):157–171CrossRefGoogle Scholar
  34. 34.
    Jerome JW, Varga RS (1969) Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems. In: Greville TNE (ed) Theory and applications of spline functions. Proceedings of an advanced seminar conducted by the mathematics research center, United States Army, at the University of Wisconsin, Madison, 7–9 Oct 1968. Academic press, New YorkGoogle Scholar
  35. 35.
    Kanarachos AE (1985) Dynamics and mechanical vibrations-finite elements. Plaisio-Fountas Publishing Company, Athens (in Greek). http://www.fountasbooks.gr/home/
  36. 36.
    Kanarachos A, Deriziotis D (1989) On the solution of Laplace and wave propagation problems using ‘C-elements’. Finite Elem Anal Des 5:97–109zbMATHCrossRefGoogle Scholar
  37. 37.
    Kanarachos A, Provatidis C (1987) Performance of mass matrices for the BEM dynamic analysis of wave propagation problems. Comput Methods Appl Mech Eng 63:155–166zbMATHCrossRefGoogle Scholar
  38. 38.
    Kanarachos A, Provatidis C (1988) On the symmetrization of the BEM formulation. Comput Methods Appl Mech Eng 71:151–165zbMATHCrossRefGoogle Scholar
  39. 39.
    Kanarachos A, Röper O (1979) Rechnerunterstützte Netzgenerierung mit Hilfe der Coonsschen Abbildung. VDI-Z 121:297–303Google Scholar
  40. 40.
    Kong J, Cheung YK (1993) Application of the spline finite strip to the analysis of shear-deformable plates. Comput Struct 46(6):985–988CrossRefGoogle Scholar
  41. 41.
    Lau TS, Lo SH (1996) Finite element mesh generation over analytical curved surfaces. Comput Struct 59(2):301–309Google Scholar
  42. 42.
    Lee CK, Hobbs RE (1998) Automatic adaptive finite element mesh generation over rational B-spline surfaces. Comput Struct 69:577–608MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Leung AYT, Au FTK (1990) Spline finite elements for beam and plate. Comput Struct 31(5):717–729CrossRefGoogle Scholar
  44. 44.
    Marshall JA, Mitchell AR (1973) An exact boundary technique for improved accuracy in the finite element method. J Inst Math Appl 12:355–362MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Martin W, Cohen E (2001) Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework. In: Proceedings of the solid modelling symposium 2001. (http://www.cs.utah.edu)
  46. 46.
    Martini E, Pelosi G, Selleri S (2003) A hybrid finite-element–modal-expansion method with a new type of curvilinear mapping for the analysis of microwave passive devices. IEEE Trans Microw Theory Tech 51(6):1712–1717CrossRefGoogle Scholar
  47. 47.
    Natekar D, Zhang X, Subbarayan G (2004) Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis. Comput Aided Des 36(5):473–486CrossRefGoogle Scholar
  48. 48.
    Pourazady M, Xu X (2000) Direct manipulations of B-spline and NURBS curves. Adv Eng Softw 31(2000):107–118zbMATHCrossRefGoogle Scholar
  49. 49.
    Provatidis CG (1987) On the application of the boundary element method in the analysis of field and dynamic problems. Doctoral dissertation, National Technical University of Athens, Department of Mechanical Engineering, Athens, Nov 1987 (in Greek). Available online at: https://www.didaktorika.gr/eadd/handle/10442/0616
  50. 50.
    Provatidis CG (2003) CAD-FEA integration using Coons interpolation. Technical report, submitted to two journals. Available online: http://users.ntua.gr/cprovat/yliko/Provatidis_CAD_CAE_Integration.pdf
  51. 51.
    Röper O (1978) Ein geometrieprozessor für die rehnerinterstützte auslegung von maschinenbauteilen mit hilfe der methode der finite elemente. Dissertation, Ruhr-Uiversität BochumGoogle Scholar
  52. 52.
    Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Q Appl Math 4(1):45–99MathSciNetCrossRefGoogle Scholar
  53. 53.
    Schramm U, Pilkey WD (1993) The coupling of geometric descriptions and finite elements using NURBs—a study in shape optimization. Finite Elem Anal Des 15(1):11–34zbMATHCrossRefGoogle Scholar
  54. 54.
    Schramm U, Pilkey WD (1994) Higher order boundary elements for shape optimization using rational B-splines. Eng Anal Bound Elem 14(3):255–266CrossRefGoogle Scholar
  55. 55.
    Schramm U, Pilkey WD, DeVries RI, Zebrowski MP (1995) Shape design for thin-walled beam cross sections using rational B splines. AIAA J 33(11):2205–2211zbMATHCrossRefGoogle Scholar
  56. 56.
    Valle L, Rivas F, Citedra MF (1994) Combining the moment method with geometrical modelling by NURBS surfaces and Bézier patches. IEEE Trans Antennas Propag 42(3):373–381CrossRefGoogle Scholar
  57. 57.
    Wachspress EL (1975) A rational finite element basis. Academic Press, BostonzbMATHCrossRefGoogle Scholar
  58. 58.
    Zhang X, Subbarayan G (2006) jNURBS: an object-oriented, symbolic framework for integrated, meshless analysis and optimal design. Adv Eng Softw 37(5):287–311CrossRefGoogle Scholar
  59. 59.
    Zienkiewicz OC (1977) The finite element method, 3rd edn. McGraw-Hill, LondonGoogle Scholar
  60. 60.
    Zienkiewicz OC, Kelly DW, Bettess P (1977) “Marriage a la mode”: the best of both worlds (finite elements and boundary integrals) (chap 5). In: Glowinski R, Rodin EY, Zienkiewicz OC (eds) Energy methods in finite element analysis. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations