Foundations of Chemical Reaction Network Theory pp 241-268 | Cite as
The Big Picture Revisited
Chapter
First Online:
Abstract
We are now in a position to revisit the mysteries described in Chapter 1. Recall that these were not mysteries about the behavior of chemical reaction networks themselves but, rather, about the behavior of people.
References
- 4.Anderson, D.F., Enciso, G.A., Johnston, M.D.: Stochastic analysis of biochemical reaction networks with absolute concentration robustness. Journal of the Royal Society Interface 11(93), 20130,943 (2014)CrossRefGoogle Scholar
- 5.Anderson, D.F., Kurtz, T.G.: Stochastic Analysis of Biochemical Systems. Springer, New York (2015)CrossRefGoogle Scholar
- 8.Appleman, J., Beard, W., Delcamp, T., Prendergast, N., Freisheim, J., Blakley, R.: Unusual transient-and steady-state kinetic behavior is predicted by the kinetic scheme operational for recombinant human dihydrofolate reductase. Journal of Biological Chemistry 265(5), 2740–2748 (1990)Google Scholar
- 32.Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B., Tyson, J.J.: Integrative analysis of cell cycle control in budding yeast. Molecular Biology of the Cell 15(8), 3841–3862 (2004)CrossRefGoogle Scholar
- 33.Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell 11(1), 369–391 (2000)CrossRefGoogle Scholar
- 41.Conley, C.: Isolated invariant sets and the Morse index. CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, RI (1978)Google Scholar
- 43.Cox, M.P., Ertl, G., Imbihl, R.: Spatial self-organization of surface structure during an oscillating catalytic reaction. Physical Review Letters 54(15), 1725–1728 (1985)CrossRefGoogle Scholar
- 52.Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proceedings of the National Academy of Sciences 103(23), 8697–8702 (2006)CrossRefGoogle Scholar
- 60.Ellison, P., Feinberg, M.: How catalytic mechanisms reveal themselves in multiple steady-state data: I. Basic principles. Journal of Molecular Catalysis. A: Chemical 154(1-2), 155–167 (2000)CrossRefGoogle Scholar
- 61.Ellison, P., Feinberg, M., Yue, M., Saltsburg, H.: How catalytic mechanisms reveal themselves in multiple steady-state data: II. An ethylene hydrogenation example. Journal of Molecular Catalysis A: Chemical 154, 169–184 (2000). [Corrigendum 260, 306 (2006)]Google Scholar
- 62.Ellison, P., Ji, H., Knight, D., Feinberg, M.: The Chemical Reaction Network Toolbox, Version 2.3 (2014). Available at https://crnt.osu.edu
- 63.Enciso, G.A.: Transient absolute robustness in stochastic biochemical networks. Journal of the Royal Society Interface 13(121) (2016)CrossRefGoogle Scholar
- 74.Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors II. Multiple steady states for networks of deficiency one. Chemical Engineering Science 43(1), 1–25 (1988)Google Scholar
- 77.Feinberg, M.: Multiple steady states for chemical reaction networks of deficiency one. Archive for Rational Mechanics and Analysis 132(4), 371–406 (1995)MathSciNetCrossRefGoogle Scholar
- 83.Feinberg, M., Terman, D.: Traveling composition waves on isothermal catalyst surfaces. Archive for Rational Mechanics and Analysis 116(1), 35–69 (1991)MathSciNetCrossRefGoogle Scholar
- 89.Geiseler, W., Bar-Eli, K.: Bistability of the oxidation of cerous ions by bromate in a stirred flow reactor. The Journal of Physical Chemistry 85(7), 908–914 (1981)CrossRefGoogle Scholar
- 100.Gunawardena, J.: Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proceedings of the National Academy of Sciences 102(41), 14,617–14,622 (2005)CrossRefGoogle Scholar
- 105.Ho, P.Y., Li, H.Y.: Determination of multiple steady states in an enzyme kinetics involving two substrates in a CSTR. Bioprocess Engineering 22(6), 557–561 (2000)CrossRefGoogle Scholar
- 110.Huang, C.Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proceedings of the National Academy of Sciences 93(19), 10,078–10,083 (1996)CrossRefGoogle Scholar
- 122.Lee, E., Salic, A., Krüger, R., Heinrich, R., Kirschner, M.W.: The roles of APC and axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biology 1(1), e10 (2003)CrossRefGoogle Scholar
- 123.Leib, T., Rumschitzki, D., Feinberg, M.: Multiple steady states in complex isothermal CFSTRs. I: General considerations. Chemical Engineering Science 43(2), 321–328 (1988)Google Scholar
- 127.Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. The Journal of Cell Biology 164(3), 353–359 (2004)CrossRefGoogle Scholar
- 131.Mullins, M.E.: Hydrocarbon reactions over transition metals: observations of surface hydrogen. Ph.D. thesis, University of Rochester (1983)Google Scholar
- 137.Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol 3(9), e184 (2007)MathSciNetCrossRefGoogle Scholar
- 139.Razon, L.F., Schmitz, R.A.: Intrinsically unstable behavior during the oxidation of carbon monoxide on platinum. Catalysis Reviews - Science and Engineering 28(1), 89–164 (1986)CrossRefGoogle Scholar
- 144.Rumschitzki, D.: On the theory of multiple steady states in isothermal CSTR’s. Ph.D. thesis, University of California, Berkeley [Work performed at the University of Rochester] (1983)Google Scholar
- 150.Segel, I.H.: Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. Wiley-Interscience, New York (1993)Google Scholar
- 167.Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nature Reviews Molecular Cell Biology 2(12), 908–916 (2001)CrossRefGoogle Scholar
- 168.Voet, D., Voet, J.G.: Biochemistry, 3rd edn. Wiley, New York (2004)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019