Analytical Network Process Method Under the Belief Function Framework

  • Amel EnnaceurEmail author
  • Zied Elouedi
  • Eric Lefevre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


This paper describes a belief extension of the analytic network process (ANP), a multi-criteria prioritization method to model decision making under uncertain context. The approach accommodates the use of qualitative preference relations as input information in the pairwise comparison matrices. Instead of applying the Saaty scale in the prioritization process, a new method, based on the belief function theory, is applied. The proposed approach is illustrated by examples.


  1. 1.
    Asan, U., Serdarasan, A.S.S.: A fuzzy analytic network process approach. In: Computational Intelligence Systems in Industrial Engineering, Atlantis Computational Intelligence Systems, pp. 155–179 (2012)Google Scholar
  2. 2.
    Ben Yaghlane, A., Denoeux, T., Mellouli, K.: Constructing belief functions from expert opinions. In: Proceedings of the 2nd International Conference on Information and Communication Technologies: from Theory to Applications (ICTTA 2006), Damascus, Syria, pp. 75–89 (2006)Google Scholar
  3. 3.
    Beynon, M., Xu, D.C., Marshall, D.: An expert system for multi-criteria decision making using dempster shafer theory. Expert. Syst. Appl. 20, 357–367 (2001)CrossRefGoogle Scholar
  4. 4.
    Ennaceur, A., Elouedi, Z., Lefevre, E.: Handling partial preferences in the belief AHP method: application to life cycle assessment. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 395–400. Springer, Heidelberg (2011). Scholar
  5. 5.
    Ennaceur, A., Elouedi, Z., Lefevre, E.: Multicriteria decision making based on qualitative assessments and relational belief. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 48–59. Springer, Cham (2013). Scholar
  6. 6.
    Ennaceur, A., Elouedi, Z., Lefevre, É.: Modeling qualitative assessments under the belief function framework. In: Cuzzolin, F. (ed.) BELIEF 2014. LNCS (LNAI), vol. 8764, pp. 171–179. Springer, Cham (2014). Scholar
  7. 7.
    Ennaceur, A., Elouedi, Z., Lefevre, E.: Multi-criteria decision making method with belief preference relations. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22(4), 573–590 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Laarhoven, P.V., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 199–227 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mikhailov, L.: Deriving priorities from fuzzy pairwise comparison judgments. Fuzzy Sets Syst. 134(3), 365–385 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mikhailov, L., Singh, M.G.: Fuzzy analytic network process and its application to the development of decision support systems. IEEE Trans. Syst. Man Cybern. 33(1), 33–41 (2003)CrossRefGoogle Scholar
  11. 11.
    Pal, N., Bezdek, J., Hemasinha, R.: Uncertainty measures for evidential reasoning I: a review. Int. J. Approx. Reason. 7, 165–183 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pal, N., Bezdek, J., Hemasinha, R.: Uncertainty measures for evidential reasoning II: a review. Int. J. Approx. Reason. 8, 1–16 (1993)CrossRefGoogle Scholar
  13. 13.
    Saaty, T.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, New-York (1980)zbMATHGoogle Scholar
  15. 15.
    Saaty, T.: Decision making with dependence and feedback: The Analytic Network Process. RWS, Pittsburgh (1996)Google Scholar
  16. 16.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  17. 17.
    Smets, P.: The application of the transferable belief model to diagnostic problems. Int. J. Intell. Syst. 13, 127–158 (1998)CrossRefGoogle Scholar
  18. 18.
    Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wong, S., Lingras, P.: Representation of qualitative user preference by quantitative belief functions. IEEE Trans. Knowl. Data Eng. 6, 72–78 (1994)CrossRefGoogle Scholar
  20. 20.
    Yu, R., Tzeng, G.H.: A soft computing method for multi-criteria decision making with dependence and feedback. Appl. Math. Comput. 180, 63–75 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut Supérieur de Gestion, LARODECUniversité de TunisTunisTunisia
  2. 2.Faculté des Sciences Juridiques, Economiques et de Gestion de JendoubaUniversité de JendoubaJendoubaTunisie
  3. 3.Univ. Artois, EA 3926 LGI2A Béthune, LGI2AArrasFrance

Personalised recommendations