Twitter User Recommendation for Gaining Followers

  • Francesco Corcoglioniti
  • Yaroslav Nechaev
  • Claudio Giuliano
  • Roberto Zanoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


While social media presence is increasingly important for businesses, growing a social media account and improving its reputation by gathering followers are time-consuming tasks, especially for professionals and small businesses lacking the necessary skills and resources. With the broader goal of providing automatic tool support for social media account automation, in this paper we consider the problem of recommending a Twitter account manager a top-K list of Twitter users that, if approached—e.g., followed, mentioned, or otherwise targeted on social media—are likely to follow the account and interact with it, this way improving its reputation. We propose a recommendation system tackling this problem that leverages features ranging from basic social media attributes to specialized, domain-relevant user profile attributes predicted from data using machine learning techniques, and we report on a preliminary analysis of its performance in gathering new followers in a Twitter scenario where the account manager follows recommended users to trigger their follow-back.


Social media Recommendation systems Machine learning 



This work was partially supported by the EC Commission through EIT Digital’s High Impact Initiative Street Smart Retail (HII SSR).


  1. 1.
    Armentano, M.G., Godoy, D., Amandi, A.: Topology-based recommendation of users in micro-blogging communities. J. Comput. Sci. Tech. 27(3), 624–634 (2012)CrossRefGoogle Scholar
  2. 2.
    Armentano, M., Godoy, D., Amandi, A.: Followee recommendation based on text analysis of micro-blogging activity. Inf. Syst. 38(8), 1116–1127 (2013)CrossRefGoogle Scholar
  3. 3.
    Barbieri, N., Bonchi, F., Manco, G.: Who to follow and why: link prediction with explanations. In: Proceedings of KDD, pp. 1266–1275 (2014)Google Scholar
  4. 4.
    Barbu, O.: Advertising, microtargeting and social media. Procedia - Soc. Behav. Sci. 163, 44–49 (2014)CrossRefGoogle Scholar
  5. 5.
    Chaoji, V., Ranu, S., Rastogi, R., Bhatt, R.: Recommendations to boost content spread in social networks. In: Proceedings of WWW, pp. 529–538 (2012)Google Scholar
  6. 6.
    Corcoglioniti, F., Giuliano, C., Nechaev, Y., Zanoli, R.: Pokedem: an automatic social media management application. In: Proceedings of RecSys, pp. 358–359 (2017)Google Scholar
  7. 7.
    Corcoglioniti, F., Palmero Aprosio, A., Nechaev, Y., Giuliano, C.: MicroNeel: Combining NLP tools to perform named entity detection and linking on microposts. In: Proceedings of EVALITA (2016)Google Scholar
  8. 8.
    Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: Fame for sale: efficient detection of fake Twitter followers. Decis. Support Syst. 80, 56–71 (2015)CrossRefGoogle Scholar
  9. 9.
    Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: The who to follow service at Twitter. In: Proceedings of WWW, pp. 505–514 (2013)Google Scholar
  10. 10.
    Hannon, J., Bennett, M., Smyth, B.: Recommending Twitter users to follow using content and collaborative filtering approaches. In: Proceedings of RecSys, pp. 199–206 (2010)Google Scholar
  11. 11.
    Kim, Y., Shim, K.: TWILITE: a recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation. Inf. Syst. 42, 59–77 (2014)CrossRefGoogle Scholar
  12. 12.
    Kywe, S.M., Lim, E.P., Zhu, F.: A survey of recommender systems in Twitter. In: Proceedings of SocInfo, pp. 420–433 (2012)Google Scholar
  13. 13.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). Scholar
  14. 14.
    Nechaev, Y., Corcoglioniti, F., Giuliano, C.: Concealing interests of passive users in social media. In: Proceedings of Re-coding Black Mirror ISWC Workshop (2017)Google Scholar
  15. 15.
    Nechaev, Y., Corcoglioniti, F., Giuliano, C.: Linking knowledge bases to social media profiles. In: Proceedings of SAC, pp. 145–150 (2017)Google Scholar
  16. 16.
    Nechaev, Y., Corcoglioniti, F., Giuliano, C.: SocialLink: linking DBpedia entities to corresponding Twitter accounts. In: Proceedings of ISWC, pp. 165–174 (2017)Google Scholar
  17. 17.
    Nechaev, Y., Corcoglioniti, F., Giuliano, C.: SocialLink: exploiting graph embeddings to link DBpedia entities to Twitter profiles. Prog. Artif. Intell. (2018, to appear)Google Scholar
  18. 18.
    Nechaev, Y., Corcoglioniti, F., Giuliano, C.: Type prediction combining linked open data and social media. In: Proceedings of CIKM (2018, to appear)Google Scholar
  19. 19.
    Paniagua, J., Sapena, J.: Business performance and social media: love or hate? Bus. Horiz. 57(6), 719–728 (2014)CrossRefGoogle Scholar
  20. 20.
    Piao, G., Breslin, J.G.: Inferring user interests in microblogging social networks: a survey. User Model. User-Adapt. Interact. 28, 277–329 (2018)CrossRefGoogle Scholar
  21. 21.
    Tommasel, A., Corbellini, A., Godoy, D., Schiaffino, S.: Personality-aware followee recommendation algorithms: an empirical analysis. Eng. Appl. Artif. Intell. 51, 24–36 (2016)CrossRefGoogle Scholar
  22. 22.
    Yuan, G., Murukannaiah, P.K., Zhang, Z., Singh, M.P.: Exploiting sentiment homophily for link prediction. In: Proceedings of RecSys, pp. 17–24 (2014)Google Scholar
  23. 23.
    Zhao, G., Lee, M.L., Hsu, W., Chen, W., Hu, H.: Community-based user recommendation in uni-directional social networks. In: Proceedings of CIKM, pp. 189–198 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrentoItaly
  2. 2.University of TrentoTrentoItaly

Personalised recommendations