From Semantically Abstracted Traces to Process Mining and Process Model Comparison

  • Giorgio Leonardi
  • Manuel Striani
  • Silvana Quaglini
  • Anna Cavallini
  • Stefania MontaniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


Process model comparison can be exploited to assess the quality of organizational procedures, to identify non-conformances with respect to given standards, and to highlight critical situations. Sometimes, however, it is difficult to make sense of large and complex process models, while a more abstract view of the process would be sufficient for the comparison task. In this paper, we show how process traces, abstracted on the basis of domain knowledge, can be provided as an input to process mining, and how abstract models (i.e., models mined from abstracted traces) can then be compared and ranked, by adopting a similarity metric able to take into account penalties collected during the abstraction phase. The overall framework has been tested in the field of stroke management, where we were able to rank abstract process models more similarly to the ordering provided by a domain expert, with respect to what could be obtained when working on non-abstract ones.


  1. 1.
    Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2), 573–598 (2018)CrossRefGoogle Scholar
  2. 2.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognit. Lett. 18(8), 689–694 (1997)CrossRefGoogle Scholar
  3. 3.
    Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: The onprom toolchain for extracting business process logs using ontology-based data access. In: Clarisó, R., (eds.) Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, 13 September 2017, CEUR Workshop Proceedings, vol. 1920. (2017)Google Scholar
  4. 4.
    Casati, F., Shan, M.-C.: Semantic analysis of business process executions. In: Jensen, C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002). Scholar
  5. 5.
    de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007 Part II. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007). Scholar
  6. 6.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009). Scholar
  7. 7.
    Grando, M.A., Schonenberg, M.H., van der Aalst, W.M.P.: Semantic process mining for the verification of medical recommendations. In: Traver, V., Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) HEALTHINF 2011 - Proceedings of the International Conference on Health Informatics, Rome, Italy, 26–29 January, 2011, pp. 5–16. SciTePress (2011)Google Scholar
  8. 8.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). Scholar
  9. 9.
    LaRosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11 (2013)Google Scholar
  10. 10.
    De Maio, M.N., Salatino, M., Aliverti, E.: Mastering JBoss Drools 6 for Developers. Packt Publishing, Birmingham (2016)Google Scholar
  11. 11.
    Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technology and case-based change reuse for long-term processes. Int. J. Intell. Inf. Technol. 4(1), 80–98 (2008)CrossRefGoogle Scholar
  12. 12.
    Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: A knowledge-intensive approach to process similarity calculation. Expert Syst. Appl. 42(9), 4207–4215 (2015)CrossRefGoogle Scholar
  13. 13.
    Palmer, M., Wu, Z.: Verb semantics for english-chinese translation. Mach. Transl. 10, 59–92 (1995)CrossRefGoogle Scholar
  14. 14.
    Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Leymann, F.: Semantic business process management: scaling up the management of business processes. In: Proceedings of the 2th IEEE International Conference on Semantic Computing (ICSC 2008), 4–7 August 2008, Santa Clara, California, USA, pp. 546–553. IEEE Computer Society (2008)Google Scholar
  15. 15.
    van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). Scholar
  16. 16.
    van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The proM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Berlin (2005). Scholar
  17. 17.
    Weijters, A., van der Aalst, W., Alves de Medeiros, A.: Process Mining with the Heuristic Miner Algorithm, WP 166. Eindhoven University of Technology, Eindhoven (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Giorgio Leonardi
    • 1
  • Manuel Striani
    • 2
  • Silvana Quaglini
    • 3
  • Anna Cavallini
    • 4
  • Stefania Montani
    • 1
    Email author
  1. 1.DISIT, Computer Science InstituteUniversity of Piemonte OrientaleAlessandriaItaly
  2. 2.Department of Computer ScienceUniversity of TorinoTurinItaly
  3. 3.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  4. 4.Istituto di Ricovero e Cura a Carattere Scientifico Fondazione “C. Mondino” - on behalf of the Stroke Unit Network (SUN) Collaborating CentersPaviaItaly

Personalised recommendations