Operating Room Scheduling via Answer Set Programming

  • Carmine Dodaro
  • Giuseppe Galatà
  • Marco MarateaEmail author
  • Ivan Porro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


The Operating Room Scheduling (ORS) problem is the task of assigning patients to operating rooms, taking in account different specialties, the surgery and operating room shift durations and different priorities. Given that Answer Set Programming (ASP) has been recently employed for solving real-life scheduling and planning problems, in this paper we first present an off-line solution based on ASP for solving the ORS problem. Then, we present techniques for re-scheduling on-line in case the off-line schedule can not be fully applied. Results of an experimental analysis conducted on benchmarks with realistic sizes and parameters show that ASP is a suitable solving methodology also for the ORS problem.


  1. 1.
    Abedini, A., Ye, H., Li, W.: Operating room planning under surgery type and priority constraints. Proc. Manuf. 5, 15–25 (2016)Google Scholar
  2. 2.
    Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with answer set programming. Fundam. Inf. 147(1), 1–25 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core shrinking. TPLP 16(5–6), 533–551 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming encoding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 468–482. Springer, Cham (2017). Scholar
  5. 5.
    Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., Testi, A.: A two level metaheuristic for the operating room scheduling and assignment problem. Comput. Oper. Res. 54, 21–34 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-advisor: a case study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001). Scholar
  7. 7.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  8. 8.
    Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)CrossRefGoogle Scholar
  9. 9.
    Calimeri, F., et al.: ASP-Core-2 Input Language Format (2013).
  10. 10.
    Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Combining answer set programming and domain heuristics for solving hard industrial problems (application paper). TPLP 16(5–6), 653–669 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry: a solution based on ASP. In: ten Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209, pp. 77–92. Springer, Cham (2015). Scholar
  13. 13.
    Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 301–307. Springer, Cham (2017). Scholar
  14. 14.
    Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP 15(1), 35–78 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gavanelli, M., Nonato, M., Peano, A.: An ASP approach for the valves positioning optimization in a water distribution system. J. Log. Comput. 25(6), 1351–1369 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: ICLP (Technical Communications). OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  18. 18.
    Landa, P., Aringhieri, R., Soriano, P., Tànfani, E., Testi, A.: A hybrid optimization algorithm for surgeries scheduling. Oper. Res. Health Care 8, 103–114 (2016)CrossRefGoogle Scholar
  19. 19.
    Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set programming. TPLP 14(6), 841–868 (2014)MathSciNetGoogle Scholar
  20. 20.
    Molina-Pariente, J.M., Hans, E.W., Framinan, J.M., Gomez-Cia, T.: New heuristics for planning operating rooms. Comput. Indus. Eng. 90, 429–443 (2015)CrossRefGoogle Scholar
  21. 21.
    Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building with answer set programming in the gioia-tauro seaport. TPLP 12(3), 361–381 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Shu, A.C., Subbaraj, I., Phan, L.: Operating Room Rescheduler (2015)Google Scholar
  23. 23.
    Zhang, J., Dridi, M., El Moudni, A.: A stochastic shortest-path MDP model with dead ends for operating rooms planning, pp. 1–6, September 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Carmine Dodaro
    • 1
  • Giuseppe Galatà
    • 2
  • Marco Maratea
    • 1
    Email author
  • Ivan Porro
    • 2
  1. 1.DIBRIS, University of GenovaGenovaItaly
  2. 2.SurgiQ srlGenovaItaly

Personalised recommendations