Annotating Concept Abstractness by Common-Sense Knowledge

  • Enrico Mensa
  • Aureliano Porporato
  • Daniele P. Radicioni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)


Dealing with semantic representations of concepts involves collecting information on many aspects that collectively contribute to (lexical, semantic and ultimately) linguistic competence. In the last few years mounting experimental evidences have been gathered in the fields of Neuroscience and Cognitive Science on conceptual access and retrieval dynamics that posit novel issues, such as the imageability associated to terms and concepts, or abstractness features as a correlate of figurative uses of language. However, this body of research has not yet penetrated Computational Linguistics: specifically, as regards as Lexical Semantics, in the last few years the field has been dominated by distributional models and vectorial representations. We recently proposed COVER, that relies on a partly different approach. Conceptual descriptions herein are aimed at putting together the lexicographic precision of BabelNet and the common-sense available in ConceptNet. We now propose Abs-COVER, that extends the existing lexical resource by associating an abstractness score to the concepts contained therein. We introduce the detailed algorithms and report about an extensive evaluation on the renewed resource, where we obtained correlations with human judgements in line or higher compared to state of the art approaches.


Concept abstractness Concept representation Lexical Resources Knowledge representation Figurative language NL semantics 


  1. 1.
    Bambini, V., Resta, D., Grimaldi, M.: A dataset of metaphors from the Italian literature: exploring psycholinguistic variables and the role of context. PloS One 9(9), 1–13 (2014)CrossRefGoogle Scholar
  2. 2.
    Benz, D., Körner, C., Hotho, A., Stumme, G., Strohmaier, M.: One tag to bind them all: measuring term abstractness in social metadata. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 360–374. Springer, Heidelberg (2011). Scholar
  3. 3.
    Birke, J., Sarkar, A.: A clustering approach for nearly unsupervised recognition of nonliteral language. In: Proceedings of the 11th Conference of EACL (2006)Google Scholar
  4. 4.
    Brysbaert, M., Warriner, A.B., Kuperman, V.: Concreteness ratings for 40,000 generally known english word lemmas. Behav. Res. Methods 46(3), 904–911 (2014)CrossRefGoogle Scholar
  5. 5.
    Changizi, M.A.: Economically organized hierarchies in wordnet and the Oxford English dictionary. Cogn. Syst. Res. 9, 214–228 (2008)CrossRefGoogle Scholar
  6. 6.
    Coltheart, M.: The MRC psycholinguistic database. Q. J. Exp. Psychol. Sect. A 33(4), 497–505 (1981)CrossRefGoogle Scholar
  7. 7.
    Frassinelli, D., Naumann, D., Utt, J., Walde, I., Schulte, S.: Contextual characteristics of concrete and abstract words. In: IWCS 2017 (2017)Google Scholar
  8. 8.
    Ghignone, L., Lieto, A., Radicioni, D.P.: Typicality-based inference by plugging conceptual spaces into ontologies. In: Proceedings of AIC. CEUR (2013)Google Scholar
  9. 9.
    Iliev, R., Axelrod, R.: The paradox of abstraction: precision versus concreteness. J. Psycholinguist. Res. 46(3), 715–729 (2017)CrossRefGoogle Scholar
  10. 10.
    Kwong, O.Y.: Sense abstractness, semantic activation, and word sense disambiguation. Int. J. Speech Technol. 11(3–4), 135 (2008)CrossRefGoogle Scholar
  11. 11.
    Lieto, A., Mensa, E., Radicioni, D.P.: A resource-driven approach for anchoring linguistic resources to conceptual spaces. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 435–449. Springer, Cham (2016). Scholar
  12. 12.
    Lieto, A., Mensa, E., Radicioni, D.P.: Taming sense sparsity: a common-sense approach. In: Proceedings of CLiC-it 2016 (2016)Google Scholar
  13. 13.
    Lieto, A., Minieri, A., Piana, A., Radicioni, D.P.: A knowledge-based system for prototypical reasoning. Connect. Sci. 27(2), 137–152 (2015)CrossRefGoogle Scholar
  14. 14.
    Mensa, E., Porporato, A., Radicioni, D.P.: Grasping metaphors: lexical semantics in metaphor analysis. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 192–195. Springer, Cham (2018). Scholar
  15. 15.
    Mensa, E., Radicioni, D.P., Lieto, A.: COVER: a linguistic resource combining common sense and lexicographic information. Lang. Resour. Eval. 52(4), 921–948 (2018)CrossRefGoogle Scholar
  16. 16.
    Miller, G.A., Leacock, C., Tengi, R., Bunker, R.T.: A semantic concordance. In: Proceedings of the Workshop on Human Language Technology, pp. 303–308. ACL (1993)Google Scholar
  17. 17.
    Navigli, R., Ponzetto, S.P.: BabelNet: building a very large multilingual semantic network. In: Proceedings of the 48th ACL, pp. 216–225. ACL (2010)Google Scholar
  18. 18.
    Neuman, Y., et al.: Metaphor identification in large texts corpora. PloS One 8(4), e62343 (2013)CrossRefGoogle Scholar
  19. 19.
    Theijssen, D., van Halteren, H., Boves, L., Oostdijk, N.: On the difficulty of making concreteness concrete. CLIN J. 1, 61–77 (2011)Google Scholar
  20. 20.
    Vigliocco, G., Meteyard, L., Andrews, M., Kousta, S.: Toward a theory of semantic representation. Lang. Cogn. 1(2), 219–247 (2009)CrossRefGoogle Scholar
  21. 21.
    Xing, X., Zhang, Y., Han, M.: Query difficulty prediction for contextual image retrieval. In: Gurrin, C., et al. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 581–585. Springer, Heidelberg (2010). Scholar
  22. 22.
    Zhu, Z., Bernhard, D., Gurevych, I.: A monolingual tree-based translation model for sentence simplification. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1353–1361. ACL (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Enrico Mensa
    • 1
  • Aureliano Porporato
    • 1
  • Daniele P. Radicioni
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di TorinoTurinItaly

Personalised recommendations