Advertisement

Exploring Abstract Argumentation-Based Approaches to Tackle Inconsistent Observations in Inductive Logic Programming

  • Andrea PazienzaEmail author
  • Stefano Ferilli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)

Abstract

Noisy (uncertain, missing, or inconsistent) information, typical of many real-world domains, may dramatically affect the performance of logic-based Machine Learning. Multistrategy Learning approaches have been tried to solve this problem by coupling Inductive Logic Programming with other kinds of inference. While uncertainty has been tackled using probabilistic approaches, and abduction has been used to deal with missing data, inconsistency is still an open problem. In the Multistrategy Learning perspective, this paper proposes to attack this latter kind of noise using (abstract) Argumentation, an inferential strategy aimed at handling conflicting information. More specifically, it defines a pre-processing operator based on abstract argumentation that can detect and remove noisy atoms from the observations before running the learning system on the polished data. Quantitative and qualitative experiments point out some strengths and weaknesses of the proposed approach, and suggest lines for future research on this topic.

Keywords

Inductive Logic Programming Conflicting information Abstract argumentation Multistrategy Learning 

References

  1. 1.
    Ali, K.M., Pazzani, M.J.: HYDRA: a noise-tolerant relational concept learning algorithm. In: IJCAI, pp. 1064–1071 (1993)Google Scholar
  2. 2.
    Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.: Handbook of Formal Argumentation, vol. 1. College Publications, Joplin (2018)zbMATHGoogle Scholar
  3. 3.
    Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389. Springer, Heidelberg (2005).  https://doi.org/10.1007/11518655_33CrossRefGoogle Scholar
  4. 4.
    Ceri, S., Gottlöb, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990).  https://doi.org/10.1007/978-3-642-83952-8CrossRefGoogle Scholar
  5. 5.
    De Raedt, L., Lavrač, N.: Multiple predicate learning in two inductive logic programming settings. Log. J. IGPL 4(2), 227–254 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. intell. 77(2), 321–357 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Džeroski, S.: Handling imperfect data in inductive logic programming. In: Proceedings of the Fourth Scandinavian Conference on Artificial Intelligence–93, SCAI93, pp. 111–125 (1993)Google Scholar
  8. 8.
    Egly, U., Gaggl, S.A., Woltran, S.: ASPARTIX: implementing argumentation frameworks using answer-set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89982-2_67CrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ferilli, S.: Extending expressivity and flexibility of abductive logic programming. J. Intell. Inf. Syst. (2018). https://doi.org/10.1007/s10844-018-0531-6, ISSN: 1573-7675CrossRefGoogle Scholar
  11. 11.
    Gamberger, D., Lavrač, N., Džeroski, S.: Noise elimination in inductive concept learning: a case study in medical diagnosis. In: Arikawa, S., Sharma, A.K. (eds.) ALT 1996. LNCS, vol. 1160, pp. 199–212. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61863-5_47CrossRefzbMATHGoogle Scholar
  12. 12.
    Lavrač, N., Džeroski, S., Grobelnik, M.: Learning nonrecursive definitions of relations with linus. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 265–281. Springer, Heidelberg (1991).  https://doi.org/10.1007/BFb0017020CrossRefGoogle Scholar
  13. 13.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987).  https://doi.org/10.1007/978-3-642-83189-8CrossRefzbMATHGoogle Scholar
  14. 14.
    McCreath, E., Sharma, A.: ILP with noise and fixed example size: a Bayesian approach. In: IJCAI, vol. 97, pp. 1310–1315 (1997)Google Scholar
  15. 15.
    Muggleton, S., Feng, C.: Efficient induction of logic programs. In: New Generation Computing. Academic Press (1990)Google Scholar
  16. 16.
    Quinlan, J.R.: Learning logical definitions from relations. Mach.learn. 5(3), 239–266 (1990)Google Scholar
  17. 17.
    Rahwan, I., Simari, G.R., van Benthem, J.: Argumentation in Artificial Intelligence, vol. 47. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-0-387-98197-0CrossRefGoogle Scholar
  18. 18.
    Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theories. Mach. Learn. 19(2), 95–131 (1995)Google Scholar
  19. 19.
    Rotella, F., Ferilli, S.: Probabilistic abductive logic programming using possible worlds. In: Proceedings of the 28th Italian Convention on Computational Logic (CILC-2013), Central Europe (CEUR) Workshop Proceedings, vol. 1068, pp. 131–145 (2013)Google Scholar
  20. 20.
    Rouveirol, C.: Extensions of inversion of resolution applied to theory completion. In: Inductive Logic Programming, pp. 64–90. Academic Press (1992)Google Scholar
  21. 21.
    Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-49674-2_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di BariBariItaly

Personalised recommendations