Advertisement

Analyzing Microblogging Posts for Tracking Collective Emotional Trajectories

  • Corrado Loglisci
  • Giuseppina Andresini
  • Angelo Impedovo
  • Donato Malerba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11298)

Abstract

The technologies of communication, such as forums and instant messaging, available in the social media platforms open to the possibility to convey and express emotions and feelings, besides to facilitate interaction. Emotions and social relationships are often connected, indeed, emotions and feelings can make the users favorable or reluctant to socialize, as well, experiences of socialization can influence the behaviors. Being personal, emotions and feelings can be crucial in the dynamics of social communities, perhaps more than other elements, such as events and multimedia items, because the individuals tend to interact with the users with who have particular affinity or with who share sensations. In this paper we introduce the problem of tracking users who share emotional behavior with other users. The proposed method relies on a cyberspace based on emotional words extracted from social media posts. It builds emotional trajectories as sequences of points of the cyberspace characterized by highly similar emotions. We show the viability of the method on Twitter data and provide a quantitative evaluation and qualitative considerations.

Notes

Acknowledgments

This work fulfills the objectives the project “Computer-mediated collaboration in creative projects” (8GPS5R0) collocated in “Intervento cofinanziato dal Fondo di Sviluppo e Coesione 2007–2013 – APQ Ricerca Regione Puglia - Programma regionale a sostegno della specializzazione intelligente e della sostenibilita’ sociale ed ambientale - FutureInResearch”.

References

  1. 1.
    Castellucci, G., Croce, D., De Cao, D., Basili, R.: User mood tracking for opinion analysis on twitter. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 76–88. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49130-1_7CrossRefGoogle Scholar
  2. 2.
    Chen, X., Sykora, M.D., Jackson, T.W., Elayan, S.: What about mood swings: identifying depression on twitter with temporal measures of emotions. In: Companion Proceedings of the the Web Conference 2018, WWW 2018, pp. 1653–1660. International World Wide Web Conferences Steering Committee (2018)Google Scholar
  3. 3.
    Dini, L., Bittar, A.: Emotion analysis on twitter: the hidden challenge. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation LREC 2016, Portorož, Slovenia, 23–28 May 2016 (2016)Google Scholar
  4. 4.
    Ekman, P.: Facial expression and emotion. 48, 384–392 (1993)Google Scholar
  5. 5.
    Galik, M., Rank, S.: Modelling emotional trajectories of individuals in an online chat. In: Timm, I.J., Guttmann, C. (eds.) MATES 2012. LNCS (LNAI), vol. 7598, pp. 96–105. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33690-4_10CrossRefGoogle Scholar
  6. 6.
    Garas, A., Garcia, D., Skowron, M., Schweitzer, F.: Emotional persistence in online chatting communities. Sci. Rep. 2 (2012)Google Scholar
  7. 7.
    Keene, J.R., Lang, A.: Dynamic motivated processing of emotionaltrajectories in public service announcements. Commun. Monogr. 83(4), 468–485 (2016)CrossRefGoogle Scholar
  8. 8.
    Kim, Y., Han, J., Yuan, C.: TOPTRAC: topical trajectory pattern mining. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Australia, pp. 587–596 (2015)Google Scholar
  9. 9.
    Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, 12–14 June 2007, pp. 593–604 (2007)Google Scholar
  10. 10.
    Lerman, K., Arora, M., Gallegos, L., Kumaraguru, P., Garcia, D.: Emotions, demographics and sociability in twitter interactions. In: Tenth International Conference on Web and Social Media, Cologne, Germany, pp. 201–210 (2016)Google Scholar
  11. 11.
    Liu, S., Lee, I.: Discovering sentiment sequence within email data through trajectory representation. Expert Syst. Appl. 99, 1–11 (2018)CrossRefGoogle Scholar
  12. 12.
    Loglisci, C.: Time-based discovery in biomedical literature: mining temporal links. IJDATS 5(2), 148–174 (2013)CrossRefGoogle Scholar
  13. 13.
    Loglisci, C.: Using interactions and dynamics for mining groups of moving objects from trajectory data. Int. J. Geogr. Inf. Sci. 32(7), 1436–1468 (2018)CrossRefGoogle Scholar
  14. 14.
    Loglisci, C., Ienco, D., Roche, M., Teisseire, M., Malerba, D.: Toward geographic information harvesting: extraction of spatial relational facts from web documents. In: Vreeken, J. (ed.) 12th IEEE International Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium, 10 December 2012, pp. 789–796. IEEE Computer Society (2012)Google Scholar
  15. 15.
    Loglisci, C., Ienco, D., Roche, M., Teisseire, M., Malerba, D.: An unsupervised framework for topological relations extraction from geographic documents. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 48–55. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32597-7_5CrossRefGoogle Scholar
  16. 16.
    Loglisci, C., Malerba, D.: Mining periodic changes in complex dynamic data through relational pattern discovery. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS (LNAI), vol. 9607, pp. 76–90. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39315-5_6CrossRefGoogle Scholar
  17. 17.
    Loglisci, C., Malerba, D.: Leveraging temporal autocorrelation of historical data for improving accuracy in network regression. Stat. Anal. Data Min. 10(1), 40–53 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Roshanaei, M., Mishra, S.: Studying the attributes of users in twitter considering their emotional states. Soc. Netw. Anal. Min. 5(1), 34:1–34:13 (2015)CrossRefGoogle Scholar
  19. 19.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  20. 20.
    Sailunaz, K., Dhaliwal, M., Rokne, J., Alhajj, R.: Emotion detection from text and speech: a survey. Soc. Netw. Anal. Min. 8(1), 28 (2018)CrossRefGoogle Scholar
  21. 21.
    Strapparava, C., Valitutti, A.: WordNet affect: an affective extension of WordNet. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, LREC 2004, Lisbon, Portugal, 26–28 May 2004. European Language Resources Association (2004)Google Scholar
  22. 22.
    Zhao, Y., Qin, B., Dong, Z., Chen, H., Liu, T.: What causes different emotion distributions of a hot event? A deep event-emotion analysis system on microblogs. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) NLPCC 2015. LNCS (LNAI), vol. 9362, pp. 453–464. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25207-0_42CrossRefGoogle Scholar
  23. 23.
    Zhou, Q., Zhang, C.: Emotion evolutions of sub-topics about popular events on microblogs. Electron. Libr. 35(4), 770–782 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhu, C., Zhu, H., Ge, Y., Chen, E., Liu, Q.: Tracking the evolution of social emotions: a time-aware topic modeling perspective. In: 2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, 14–17 December 2014, pp. 697–706 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Corrado Loglisci
    • 1
  • Giuseppina Andresini
    • 1
  • Angelo Impedovo
    • 1
  • Donato Malerba
    • 1
  1. 1.Department of Computer ScienceUniversity of BariBariItaly

Personalised recommendations