Advertisement

Procedure Model for Supply Chain Digitalization Scenarios for a Data-Driven Supply Chain Risk Management

  • Florian Schlüter
Chapter
Part of the Springer Series in Supply Chain Management book series (SSSCM, volume 7)

Abstract

Screening existing literature on Supply Chain Risk Management (SCRM) shows that only sporadic attention is paid to real data-driven SCRM. Most tools and approaches lead to an expert knowledge-based SCRM. Due to the emerging topic of digitalization in supply chains, there is huge potential in building a data-driven, smart SCRM. Looking at the literature related to digitalization in supply chains reveals that most publications are related to actual applications and less attention is paid to conceptual models making digitalization manageable. This chapter presents a process model to support the management in developing and assessing supply chain process-oriented digitalization scenarios with a focus on risk prevention and reduction. Decision makers can decide between different maturity stages for their SCRM and develop digitalization scenarios in workshops supported by domain- mapping matrices to structure the process. The decision-making process ends with an evaluation approach.

References

  1. Becker, T. (2008). Prozesse in Produktion und Supply Chain optimieren. Berlin, Heidelberg: Springer.Google Scholar
  2. Becker, W., Ulrich, P., Botzkowski, T., & Eurich, S. (2016). Controlling von Digitalisierungsprozessen - Veränderungstendenzen und empirische Erfahrungswerte aus dem Mittelstand. In R. Obermaier (Ed.), Industrie 4.0 als unternehmerische Gestaltungsaufgabe: Betriebswirtschaftliche, technische und rechtliche Herausforderungen (pp. 97–118). Wiesbaden: Springer Gabler.CrossRefGoogle Scholar
  3. Belgorodski, N., Greiner, M., Tolksdorf, K., & Schueller, K. (2017). Package ‘rriskDistributions’. Online: https://cran.r-project.org/web/packages/rriskDistributions/rriskDistributions.pdf (08.11.2018).
  4. Bischoff, J., Taphorn, C., Wolter, D., Braun, N., Fellbaum, M., Goloverov, A., et al. (2015). Erschließen der potenziale der anwendung von “Industrie 4.0” im Mittelstand. Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWi). Mühlheim (Ruhr): Agiplan GmbH.Google Scholar
  5. Biswas, S., & Sen, J. (2016). A proposed architecture for big data driven supply chain analytics. International Journal of Supply Chain Management, 3(2016), 7–34.Google Scholar
  6. Bode, M., Schönhärl, J., Jager, M., & Schmidt, M. (2014). Innovationssysteme zur strategischen Steuerung von Innovationen. In F. Keuper & R. Sauter (Eds.), Unternehmenssteuerung in der produzierenden Industrie (pp. 67–88). Wiesbaden: Springer Fachmedien.Google Scholar
  7. Bostrom, R. P., & Heinen, J. S. (1977). MIS problems and failures: A socio-technical perspective: Part I: The causes. MIS Quarterly, 1(3), 17–32.CrossRefGoogle Scholar
  8. Browning, T. R. (2016). Design structure matrix extensions and innovations: A survey and new opportunities. IEEE Transactions on Engineering Management, 63(1), 27–52.CrossRefGoogle Scholar
  9. Butner, K. (2010). The smarter supply chain of the future. Strategy & Leadership, 38(1), 22–31.CrossRefGoogle Scholar
  10. Chatfield, D. C., Kim, J. G., Harrison, T. P., & Hayya, J. C. (2004). The bullwhip effect: Impact of stochastic lead time, information quality and information sharing: A simulation study. Production and Operations Management, 13(1), 340–353.Google Scholar
  11. Chopra, S., & Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions. MIT Sloan Management Review, 55, 73–80.Google Scholar
  12. Christopher, M., & Lee, H. (2004). Mitigating supply chain risk through improved confidence. International Journal of Physical Distribution & Logistics Management, 34(5), 388–396.CrossRefGoogle Scholar
  13. Cottin, C., & Döhler, S. (2013). Risikoanalyse: Modellierung, Beurteilung und Management von Risiken mit Praxisbeispielen (2nd ed.). Studienbücher Wirtschaftsmathematik. Wiesbaden: Springer.Google Scholar
  14. Curkovic, S., Scannel, T., & Wagner, B. (2013). ISO 31000:2009—Enterprise and supply chain risk management: A longitudinal study. American Journal of Industrial and Business Management, 3(7), 614–630.CrossRefGoogle Scholar
  15. Danilovic, M., & Browning, T. R. (2007). Managing complex product development projects with design structure matrices and domain mapping matrices. International Journal of Project Management, 25(3), 300–314.CrossRefGoogle Scholar
  16. Davis, R., & Brabander, E. (2007). ARIS design platform: Getting started with BPM. London: Springer.Google Scholar
  17. de Oliveira, U. R., Marins, F. A. S., Rocha, H. M., & Salomon, V. A. P. (2017). The ISO 31000 standard in supply chain risk management. Journal of Cleaner Production, 151(2017), 616–633.CrossRefGoogle Scholar
  18. Faisal, M. N., Banwet, D. K., & Shankar, R. (2006). Supply chain risk mitigation: Modeling the enablers. Business Process Management, 12(4), 535–552.CrossRefGoogle Scholar
  19. Fan, H., Cheng, T. C. E., Li, G., & Lee, P. K. C. (2016). The effectiveness of supply chain risk information processing capability: An information processing perspective. IEEE Transactions on Engineering Management, 63(4), 414–425.CrossRefGoogle Scholar
  20. Glas, A. H., & Kleemann, F. C. (2016). The impact of industry 4.0 on procurement and supply management: A conceptual and qualitative analysis. International Journal of Business and Management Invention, 5(6), 55–66.Google Scholar
  21. Goh, R. S. M., Wang, Z., Yin, X., Fu, X., Ponnambalam, L., Lu, S., et al. (2013). RiskVis: Supply chain visualization with risk management and real-time monitoring. In IEEE International Conference on Automation Science and Engineering (CASE), 2013 (pp. 207–212). August 17–20, 2013, Madison, WI, USA. IEEE, Piscataway, NJ.Google Scholar
  22. Götze, U., & Mikus, B. (2015). Der Prozess des Risikomanagements in Supply Chains. In C. Siepermann, R. Vahrenkamp, & D. Siepmann (Eds.), Risikomanagement in Supply Chains: Gefahren abwehren, Chancen nutzen, Erfolg generieren (2nd ed., pp. 29–59). Berlin: Erich Schmidt Verlag.Google Scholar
  23. Güller, M., Koc, E., Hegmanns, T., Henke, M., & Noche, B. (2015). A simulation-based decision support framework for the real-time supply chain risk management. International Journal of Advanced Logistics, 4(1), 17–26.CrossRefGoogle Scholar
  24. Häntsch, M., & Huchzermeier, A. (2013). Identifying, analyzing, and assessing risk in the strategic planning of a production network: The practical view of a German car manufacturer. Journal Management Control, 24(2), 125–158.CrossRefGoogle Scholar
  25. Henke, M., Besenfelder, C., Kaczmarek, S., Hetterscheid, E., & Schlüter, F. (2018). Dortmund management model—a contribution to digitalization in logistics and supply chain management. In Proceedings of the 9th International Scientific Symposium on Logistics: ISSL 18 (pp. 113-124). June 13–14, 2018, Magdeburg, Germany.Google Scholar
  26. Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for Industrie 4.0 scenarios. In T. X. Bui & R. H. Sprague (Eds.), Proceedings of the 49th Annual Hawaii International Conference on System Sciences (pp 3928–3937). January 5–8, 2016, Kauai, Hawaii. IEEE, Piscataway, NJ.Google Scholar
  27. Hillman, M., & Keltz, H. (2007). Managing risk in the supply chain—a quantitative study. Online: http://www.scrlc.com/articles/AMR_Managing_Risk.pdf (08.11.2018).
  28. Hirsch-Kreinsen, H. (2014). Wandel von Produktionsarbeit - “Industrie 4.0”. WSI Mitteilungen, 6, 421–429.CrossRefGoogle Scholar
  29. Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53, 5031–5069.CrossRefGoogle Scholar
  30. ISO Guide 73. (2009). Guide 73: Risk management—Vocabulary. ISO, Genf.Google Scholar
  31. Jenny, B. (2007). Project management: Knowledge for a successful career. Zürich: Vdf Hochschulverlag.Google Scholar
  32. Kirazli, A., & Moetz, A. (2015). A methodological approach for evaluating the influences of Industrie 4.0 on risk management of the goods receiving area in a German automotive manufacturer. In: 22nd EurOMA Conference: Operations Management for Sustainable Competitiveness.Google Scholar
  33. Kuhn, A. (1995). Prozessketten in der Logistik: Entwicklungstrends und Umsetzungsstrategien. Dortmund: Verlag Praxiswissen.Google Scholar
  34. Kwak, Y. H., & Ingall, L. (2007). Exploring Monte Carlo simulation applications for project management. Risk Managment, 9(1), 44–57.Google Scholar
  35. Lee, W. S., Grosh, D. L., Tillman, F. A., & Lie, C. H. (1985). Fault tree analysis, methods, and applications—A review. IEEE Transactions on Reliability, 34(3), 194–203.CrossRefGoogle Scholar
  36. Lessard, C. S., & Lessard, J. P. (2007). Project management for engineering design. Texas: Morgan & Claypool Publishers.CrossRefGoogle Scholar
  37. Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6(2017), 1–10.CrossRefGoogle Scholar
  38. Maheswari, J. U., Charlesraj, V. P. C., Kumar, G. S., & Padala, S. S. (2016). A study on assessment of non-conformances using multiple domain matrix: A case study from metro projects. Procedia Engineering, 145, 622–629.CrossRefGoogle Scholar
  39. Milanovic, D. L., Milanovic, D. D., & Misita, M. (2010). The evaluation of risky investment projects. FME Transactions, 38, 103–106.Google Scholar
  40. Nyhuis, P., & Wiendahl, H.-P. (2009). Fundamentals of production logistics: Theory, tools and applications. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  41. Pawar, M. (2004). Data collecting methods and experiences: A guide for social researchers. Elgin, Berkshire, New Delhi: New Dawn Press.Google Scholar
  42. Pettit, T. J., Crocton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: Development and implementation of an assessment tool. Journal of Business Logistics, 34(1), 46–76.CrossRefGoogle Scholar
  43. Pfohl, H.-C., Yahsi, B., & Kurnaz, T. (2015). The impact of Industry 4.0 on the supply chain. In W. Kersten, T. Blecker, & C. M. Ringle (Eds.), Sustainability in logistics and supply chain management: New designs and strategies (pp. 31–58). Berlin: epubli GmbH.Google Scholar
  44. Ponis, S. T., & Ntalla, A. C. (2016). Supply chain risk management frameworks and models: A review. International Journal of Supply Chain Management, 5, 1–11.Google Scholar
  45. Qin, J., Liu, Y., & Grosvenor, R. (2016). A categorical framework of manufacturing for Industry 4.0 and beyond. Procedia CIRP, 52(2016), 173–178.CrossRefGoogle Scholar
  46. Roth, A. (2016). Industrie 4.0—Hype oder Revolution? In A. Roth (Ed.), Einführung und Umsetzung von Industrie 4.0: Grundlagen, Vorgehensmodell und Use Cases aus der Praxis (pp. 1–15). Berlin, Heidelberg: Springer.Google Scholar
  47. Royce, W. W. (1970). Managing the development of large software systems. In Proceedings, IEEE Wescon (pp. 1–9).Google Scholar
  48. Schlüter, F., Hetterscheid, E., & Henke, M. (2017a). A simulation-based evaluation approach for digitalization scenarios in smart supply chain risk management. Journal of Industrial Engineering and Management Science, 2017(1), 179–206.CrossRefGoogle Scholar
  49. Schlüter, F., Diedrich, K., & Güller, M. (2017b). Analyzing the impact of digitalization on supply chain risk management. In 2017 IPSERA Conference.Google Scholar
  50. Schlüter, F., & Henke, M. (2017). Smart supply chain risk management—A conceptual framework. In: W. Kersten, T. Blecker, & C. M. Ringle (Eds.), Digitalization in supply chain management and logistics (pp. 361–380). Berlin: epubli GmbH.Google Scholar
  51. Schlüter, F., & Hetterscheid, E. (2017). Supply chain process oriented technology-framework for Industry 4.0. In W. Kersten, T. Blecker, & C. M. Ringle (Eds.), Digitalization in supply chain management and logistics (pp. 275–299). Berlin: epubli GmbH.Google Scholar
  52. Schlüter, F., & Sprenger, P. (2016). Migration framework for decentralized and proactive riskidentification in a Steel Supply Chain via Industry 4.0 technologies. In: A. Spyridakos & L. Vryzidis (Eds.), Conference Proceedings of the 5th International Symposium and 27th National Conference on Operational Research, Athens (pp. 85–91).Google Scholar
  53. Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wahlster, W. (2017). Industrie 4.0 maturity index: Managing the digital transformation of companies. acatech STUDY. München: Herbert Utz Verlag.Google Scholar
  54. Seiter, M., Isensee, J., & Rosentritt, C. (2008). Evaluation of RFID investment—The extended performance analysis (EPA) approach. In RFID Systems and Technologies (RFID SysTech), 2008: 4th European Workshop on RFID Systems and Technologies (pp. 1–6). June 10–11, 2008 in Freiburg, Germany, Institute of Computer Science and Social Studies (IIG). VDE-Verl., IEEE, Berlin u.a.Google Scholar
  55. Serrat, O. (2017). Knowledge solutions. Singapore: Springer.CrossRefGoogle Scholar
  56. Shevchenko, P. V. (2011). Modelling operational risk using Bayesian inference. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  57. Steinhoff, C. (2008). Quantifizierung operationeller Risiken in Kreditinstituten: Eine Untersuchung unter besonderer Berücksichtigung von Szenarioanalysen im Rahmen von Verlustverteilungsmodellen. Göttingen: Cuvillier Verlag.Google Scholar
  58. Steward, D. V. (1962). On an approach to techniques for the analysis of the structure of large systems of equations. SIAM Review, 4(4), 321–342.CrossRefGoogle Scholar
  59. Steward, D. V. (1981). The design structure system: A method for managing the design of complex systems. IEEE Transactions on Engineering Management EM, 28(3), 71–74.CrossRefGoogle Scholar
  60. Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12–27.CrossRefGoogle Scholar
  61. ten Hompel, M., & Henke, M. (2017). Logistik 4.0—Ein Ausblick auf die Planung und das Management der zukünftigen Logistik vor dem Hintergrund der vierten industriellen Revolution. In B. Vogel-Heuser, T. Bauernhansl, & M. Hompel ten (Eds.), Handbuch Industrie 4.0 Bd.4: Allgemeine Grundlagen (2nd ed., pp. 249–259). Berlin, Heidelberg: Springer.Google Scholar
  62. van den Brink, G. J. (2005). Quantifizierung operationeller Risiken - Ein Weg zur Einbettung in den Management-Zyklus. In F. Romeike (Ed.), Modernes Risikomanagement (pp. 255–268). Weinheim: Wiley-VCH.Google Scholar
  63. Wan, J., Cai, H., & Zhou, K. (2015). Industrie 4.0: Enabling technologies. In: Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things: ICIT 2015 (pp. 135–140). January 17–18, 2015, Harbin, China. IEEE, Piscataway, NJ.Google Scholar
  64. Wang, L., & Ranjan, R. (2015). Processing distributed internet of things data in clouds. IEEE Cloud Computing, 2(1), 76–80.CrossRefGoogle Scholar
  65. Yüzgülec, G. (2015). Aggregierte Bewertung von Risikoursachen in Supply Chains der Automobilindustrie. Dortmund: Verlag Praxiswissen.Google Scholar
  66. Zio, E. (2013). The Monte Carlo simulation method for system reliability and risk analysis. Springer Series in Reliability Engineering. London: Springer.CrossRefGoogle Scholar
  67. Zsidisin, G. A., & Ritchie, B. (2009). Chapter 1: Supply chain risk management—Developments, issues and challenges. In G. A. Zsidisin & B. Ritchie (Eds.), Supply chain risk: A handbook of assessment, management, and performance (pp. 1–12). Boston: Springer, US.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of LogisticsTU Dortmund UniversityDortmundGermany

Personalised recommendations