Advertisement

FE and iO for Turing Machines from Minimal Assumptions

  • Shweta AgrawalEmail author
  • Monosij Maitra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11240)

Abstract

We construct Indistinguishability Obfuscation (\(\mathsf {iO}\)) and Functional Encryption (\(\mathsf {FE}\)) schemes in the Turing machine model from the minimal assumption of compact \(\mathsf {FE}\) for circuits (\(\mathsf {CktFE}\)). Our constructions overcome the barrier of sub-exponential loss incurred by all prior work. Our contributions are:
  1. 1.

    We construct \(\mathsf {iO}\) in the Turing machine model from the same assumptions as required in the circuit model, namely, sub-exponentially secure \(\mathsf {FE}\) for circuits. The previous best constructions [6, 41] require sub-exponentially secure \(\mathsf {iO}\) for circuits, which in turn requires sub-exponentially secure \(\mathsf {FE}\) for circuits [5, 15].

     
  2. 2.

    We provide a new construction of single input \(\mathsf {FE}\) for Turing machines with unbounded length inputs and optimal parameters from polynomially secure, compact \(\mathsf {FE}\) for circuits. The previously best known construction by Ananth and Sahai [7] relies on \(\mathsf {iO}\) for circuits, or equivalently, sub-exponentially secure \(\mathsf {FE}\) for circuits.

     
  3. 3.

    We provide a new construction of multi-input \(\mathsf {FE}\) for Turing machines. Our construction supports a fixed number of encryptors (say k), who may each encrypt a string \(\mathbf {x}_i\) of unbounded length. We rely on sub-exponentially secure \(\mathsf {FE}\) for circuits, while the only previous construction [10] relies on a strong knowledge type assumption, namely, public coin differing inputs obfuscation.

     

Our techniques are new and from first principles, and avoid usage of sophisticated \(\mathsf {iO}\) specific machinery such as positional accumulators and splittable signatures that were used by all relevant prior work [6, 7, 41].

Notes

Acknowledgement

We thank Vinod Vaikuntanathan for suggesting the generic transformation from FE to decomposable FE.

Supplementary material

References

  1. 1.
    Agrawal, S., Maitra, M.: FE and IO for turing machines from minimal assumptions. Cryptology ePrint Archive, Report 2018/ (2018). http://www.cse.iitm.ac.in/~shwetaag/research/tm-mife-full.pdf
  2. 2.
    Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from lWE. In: ICALP (2017)Google Scholar
  3. 3.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_32CrossRefzbMATHGoogle Scholar
  4. 4.
    Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_1CrossRefGoogle Scholar
  5. 5.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_15CrossRefGoogle Scholar
  6. 6.
    Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation for turing machines: constant overhead and amortization. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 252–279. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_9CrossRefGoogle Scholar
  7. 7.
    Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_6CrossRefGoogle Scholar
  8. 8.
    Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_6CrossRefGoogle Scholar
  9. 9.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM J. Comput. 43(2), 905–929 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryption for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_2CrossRefGoogle Scholar
  11. 11.
    Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_1CrossRefGoogle Scholar
  12. 12.
    Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: STOC (2015)Google Scholar
  13. 13.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_15CrossRefGoogle Scholar
  14. 14.
    Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a nash equilibrium. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1480–1498. IEEE (2015)Google Scholar
  15. 15.
    Bitansky, N., Vaikuntanathan, V.; Indistinguishability obfuscation from functional encryption. In: FOCS (2015)Google Scholar
  16. 16.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  17. 17.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_15CrossRefGoogle Scholar
  18. 18.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  19. 19.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_30CrossRefzbMATHGoogle Scholar
  20. 20.
    Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled RAM. Cryptology ePrint Archive, Report 2015/1074 (2015). https://eprint.iacr.org/2015/1074
  21. 21.
    Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp. 169–178. ACM (2016)Google Scholar
  22. 22.
    Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfuscation of iterated circuits and RAM programs. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015 (2015)Google Scholar
  23. 23.
    Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_19CrossRefzbMATHGoogle Scholar
  24. 24.
    Carmer, B., Malozemoff, A.J., Raykova, M.: 5Gen-C: multi-input functional encryption and program obfuscation for arithmetic circuits. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 747–764. ACM (2017)Google Scholar
  25. 25.
    Chen, Y.C., Chow, S.S., Chung, K.M., Lai, R.W., Lin, W.K., Zhou, H.S.: Computation-trace indistinguishability obfuscation and its applications. IACR Cryptology ePrint Archive, 2015 (2015)Google Scholar
  26. 26.
    Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: Proceedings of the Forty-Eighth Annual ACM symposium on Theory of Computing, pp. 1115–1127. ACM (2016)Google Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013). http://eprint.iacr.org/
  28. 28.
    Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_20CrossRefGoogle Scholar
  29. 29.
    Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential barrier in obfustopia. Technical report, Cryptology ePrint Archive, Report 2016/102 (2016). http://eprint.iacr.org/2016/102
  30. 30.
    Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with polynomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_16CrossRefGoogle Scholar
  31. 31.
    Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM computation. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS (2014)Google Scholar
  32. 32.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  34. 34.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_30CrossRefGoogle Scholar
  35. 35.
    Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 40–71. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_2CrossRefGoogle Scholar
  36. 36.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & #38; Communications Security, CCS 2013 (2013)Google Scholar
  37. 37.
    Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation for all circuits from secret-key functional encryption. IACR Cryptology ePrint Archive 2017, 361 (2017)Google Scholar
  38. 38.
    Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 603–648. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_20CrossRefGoogle Scholar
  39. 39.
    Kitagawa, F., Nishimaki, R., Tanaka, K.: Simple and generic constructions of succinct functional encryption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 187–217. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_7CrossRefGoogle Scholar
  40. 40.
    Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_5CrossRefGoogle Scholar
  41. 41.
    Koppula, V., Lewko, A.B., Waters,B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015 (2015)Google Scholar
  42. 42.
    Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 443–468. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_17CrossRefGoogle Scholar
  43. 43.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_20CrossRefGoogle Scholar
  44. 44.
    Lin, H., Pass, R., Seth, K., Telang,S.: Output-compressing randomized encodings and applications. In: TCC-A (2016)Google Scholar
  45. 45.
    Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_21CrossRefGoogle Scholar
  46. 46.
    Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building applications of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_6CrossRefzbMATHGoogle Scholar
  47. 47.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_42CrossRefGoogle Scholar
  48. 48.
    O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010, 556 (2010)Google Scholar
  49. 49.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  50. 50.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014). http://eprint.iacr.org/2013/454.pdf

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.IIT MadrasChennaiIndia

Personalised recommendations