Advertisement

Round Optimal Black-Box “Commit-and-Prove”

  • Dakshita KhuranaEmail author
  • Rafail Ostrovsky
  • Akshayaram Srinivasan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11239)

Abstract

Motivated by theoretical and practical considerations, an important line of research is to design secure computation protocols that only make black-box use of cryptography. An important component in nearly all the black-box secure computation constructions is a black-box commit-and-prove protocol. A commit-and-prove protocol allows a prover to commit to a value and prove a statement about this value while guaranteeing that the committed value remains hidden. A black-box commit-and-prove protocol implements this functionality while only making black-box use of cryptography.

In this paper, we build several tools that enable constructions of round-optimal, black-box commit and prove protocols. In particular, assuming injective one-way functions, we design the first round-optimal, black-box commit-and-prove arguments of knowledge satisfying strong privacy against malicious verifiers, namely:
  • Zero-knowledge in four rounds and,

  • Witness indistinguishability in three rounds.

Prior to our work, the best known black-box protocols achieving commit-and-prove required more rounds.

We additionally ensure that our protocols can be used, if needed, in the delayed-input setting, where the statement to be proven is decided only towards the end of the interaction. We also observe simple applications of our protocols towards achieving black-box four-round constructions of extractable and equivocal commitments.

We believe that our protocols will provide a useful tool enabling several new constructions and easy round-efficient conversions from non-black-box to black-box protocols in the future.

References

  1. 1.
    Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_27CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in \(\text{NC}^0\). In: 45th FOCS, pp. 166–175. IEEE Computer Society Press, Rome, Italy, 17–19 October 2004 (2004)Google Scholar
  3. 3.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. In: 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11–15 June 2005, San Jose, CA, USA, pp. 260–274 (2005),  https://doi.org/10.1109/CCC.2005.9
  4. 4.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, Raleigh, NC, USA, 16–18 October 2012 (2012)Google Scholar
  5. 5.
    Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_20CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, Montréal, Québec, Canada, 19–21 May 2002 (2002)Google Scholar
  7. 7.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_23CrossRefzbMATHGoogle Scholar
  8. 8.
    Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999).  https://doi.org/10.1137/S0097539792230010MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: 22nd ACM STOC, pp. 416–426. ACM Press, Baltimore, MD, USA, 14–16 May 1990 (1990)Google Scholar
  10. 10.
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_16CrossRefGoogle Scholar
  11. 11.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25, 169–192 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, New York City, 25–27 May 1987 (1987)Google Scholar
  14. 14.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press, Providence, RI, USA, 6–8 May 1985 (1985)Google Scholar
  15. 15.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press, San Jose, CA, USA, 6–8 June 2011 (2011)Google Scholar
  16. 16.
    Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012, pp. 51–60. IEEE Computer Society (2012).  https://doi.org/10.1109/FOCS.2012.47
  17. 17.
    Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 515–524. ACM Press, New York, 31 May–3 Jun 2014 (2014)Google Scholar
  18. 18.
    Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 1128–1141. ACM (2016).  https://doi.org/10.1145/2897518.2897657
  19. 19.
    Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_23CrossRefGoogle Scholar
  20. 20.
    Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography, Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14303-8CrossRefGoogle Scholar
  21. 21.
    Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 397–429. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_14CrossRefGoogle Scholar
  22. 22.
    Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_2CrossRefGoogle Scholar
  23. 23.
    Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_26CrossRefGoogle Scholar
  24. 24.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo Beach, California, USA, pp. 294–304. IEEE Computer Society (2000).  https://doi.org/10.1109/SFCS.2000.892118
  25. 25.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: Kleinberg, J.M. (ed.) Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006, pp. 99–108. ACM (2006).  https://doi.org/10.1145/1132516.1132531
  26. 26.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_23CrossRefGoogle Scholar
  27. 27.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 11–13 June 2007, pp. 21–30. ACM (2007).  https://doi.org/10.1145/1250790.1250794
  28. 28.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_32CrossRefGoogle Scholar
  29. 29.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_21CrossRefGoogle Scholar
  30. 30.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_1CrossRefGoogle Scholar
  31. 31.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_4CrossRefzbMATHGoogle Scholar
  32. 32.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptol. 25(4), 680–722 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_22CrossRefGoogle Scholar
  34. 34.
    Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_17CrossRefGoogle Scholar
  35. 35.
    Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_15CrossRefGoogle Scholar
  36. 36.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_24CrossRefzbMATHGoogle Scholar
  37. 37.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: 43rd FOCS, pp. 366–375. IEEE Computer Society Press, Vancouver, British Columbia, Canada, 16–19 November 2002 (2002)Google Scholar
  38. 38.
    Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_11CrossRefGoogle Scholar
  39. 39.
    Rosulek, M.: Must you know the code of f to securely compute f? In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 87–104. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_7CrossRefGoogle Scholar
  40. 40.
    shelat, A., Shen, C.: Two-output secure computation with malicious adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_22CrossRefGoogle Scholar
  41. 41.
    Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_5CrossRefGoogle Scholar
  42. 42.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada, 27–29 October 1986 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Dakshita Khurana
    • 1
    Email author
  • Rafail Ostrovsky
    • 2
  • Akshayaram Srinivasan
    • 3
  1. 1.Microsoft ResearchNew EnglandUSA
  2. 2.UCLALos AngelesUSA
  3. 3.UC BerkeleyBerkeleyUSA

Personalised recommendations