Porous Structure Design in Tissue Engineering Using Anisotropic Radial Basis Functions

  • Ye GuoEmail author
  • Ke Liu
  • Zeyun Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11241)


The rapid development of additive manufacturing in last decades has greatly improved the quality of medical implants and widened its applications in tissue engineering. For the purpose of creating realistic porous scaffolds, a series of diverse methodologies are attempted to help simplify the manufacturing process and to improve the scaffold quality. Among these approaches, implicit surface methods based on geometric models have gained much attention for its flexibility to generate porous structures. In this paper, an innovative heterogeneous modeling method using anisotropic radial basis functions (ARBFs) is introduced for designing porous structures with controlled porosity and various internal architectures. By re-defining the distance method for the radial basis functions, the interpolated porous shape can be customized according to different requirements. Numerous experiments have been conducted to show the effectiveness of the proposed method.


Porous structure design Bio-scaffolds Anisotropic radial basis functions Implicit surface modeling 


  1. 1.
    Bucklen, B.S., Wettergreen, W.A., Yuksel, E., Liebschner, M.A.K.: Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering. Virtual Phys. Prototyp. 3, 13–23 (2008)CrossRefGoogle Scholar
  2. 2.
    Chandran, S.: Introduction to kd-trees. Department of Computer Science, University of Maryland, Technical report (2004)Google Scholar
  3. 3.
    Chen, H., Guo, Y., Rostami, R., Fan, S., Tang, K., Yu, Z.: Porous structure design using parameterized hexahedral meshes and triply periodic minimal surfaces. In: Proceedings of Computer Graphics International 2018, CGI 2018, pp. 117–128. ACM, New York (2018)Google Scholar
  4. 4.
    Elomaa, L., Teixeira, S., Hakala, R., Korhonen, H., Grijpma, D.W., Seppala, J.V.: Preparation of poly(e-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomaterialia 7, 3850–3856 (2011)CrossRefGoogle Scholar
  5. 5.
    Feng, J., Fu, J., Shang, C., Lin, Z., Li, B.: Porous scaffold design by solid t-splines and triply periodic minimal surfaces. Comput. Methods Appl. Mech. Eng. 336, 333–352 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gao, Z., Yu, Z., Holst, M.: Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation. Comput. Aided Geom. Des. 29(9), 707–721 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Giannitelli, S.M., Accoto, D., Trombetta, M., Rainer, A.: Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomaterialia 10, 580–594 (2014)CrossRefGoogle Scholar
  8. 8.
    Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005)CrossRefGoogle Scholar
  9. 9.
    Khoda, A.K., Ozbolat, I.T., Koc, B.: Engineered tissue scaffolds with variational porous architecture. J. Biomech. Eng. 133, 011001 (2011)CrossRefGoogle Scholar
  10. 10.
    Kosec, G., Sarler, B.: Local RBF collocation method for Darcy flow. Comput. Model. Eng. Sci. 25, 197–208 (2008)Google Scholar
  11. 11.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)CrossRefGoogle Scholar
  12. 12.
    Melchels, F.P.W., Domingos, M.A.N., Klein, T.J., Malda, J., Bartolo, P.J.S., Hutmacher, D.W.: Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012)CrossRefGoogle Scholar
  13. 13.
    Melchels, F.P.W., Wiggenhauser, P.S., Warne, D., Barry, M., Ong, F.R., Chong, W.S., Hutmacher, D.W., Schantz, J.T.: CAD/CAM-assisted breast reconstruction. Biofabrication 3, 034114 (2011)CrossRefGoogle Scholar
  14. 14.
    Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: In 12th International Meshing Roundtable, pp. 103–114 (2003)Google Scholar
  15. 15.
    Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomaki, M.: A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008)CrossRefGoogle Scholar
  16. 16.
    Schaefer, D.W., Keefer, K.D.: Structure of random porous materials: silica aerogel. Phys. Rev. Lett. 56, 2199–2202 (1986)CrossRefGoogle Scholar
  17. 17.
    Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of porous artifacts. Comput.-Aided Des. 37, 339–353 (2005)CrossRefGoogle Scholar
  18. 18.
    Shi, J., Yang, J., Zhu, L., Li, L., Li, Z., Wang, X.: A porous scaffold design method for bone tissue engineering using triply periodic minimal surfaces. IEEE Access 6, 1015–1022 (2018)CrossRefGoogle Scholar
  19. 19.
    Sogutlu, S., Koc, B.: Stochatic modeling of tissue engineering scaffolds with varying porosity levels. Comput.-Aided Des. Appl. 4, 661–670 (2007)CrossRefGoogle Scholar
  20. 20.
    Sun, W., Starly, B., Nam, J., Darling, A.: Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput.-Aided Des. 37, 1097–1114 (2005)CrossRefGoogle Scholar
  21. 21.
    Vertnik, R., Sarler, B.: Solution of incompressible turbulent flow by a mesh-free method. Comput. Model. Eng. Sci. 44, 65–95 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Wang, J., Liu, G.: On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Comput. Methods Appl. Mech. Eng. 191, 2611–2630 (2002)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, J., Yu, Z.: Feature-sensitive tetrahedral mesh generation with guaranteed quality. Comput.-Aided Des. 44(5), 400–412 (2012)CrossRefGoogle Scholar
  24. 24.
    Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, Y.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127–141 (2016)CrossRefGoogle Scholar
  25. 25.
    Yoo, D.J.: Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 12, 61–67 (2011)CrossRefGoogle Scholar
  26. 26.
    Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32, 7741–7754 (2011)CrossRefGoogle Scholar
  27. 27.
    Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Wisconsin - MilwaukeeMilwaukeeUSA
  2. 2.Lattice Engines Inc.San MateoUSA
  3. 3.University of Wisconsin - MilwaukeeMilwaukeeUSA

Personalised recommendations