Advertisement

Patch-Based Potentials for Interactive Contour Extraction

  • Thoraya Ben Chattah
  • Sébastien BougleuxEmail author
  • Olivier Lézoray
  • Atef Hamouda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11241)

Abstract

The problem of interactive contour extraction of targeted objects of interest in images is challenging and finds many applications in image editing tasks. Several methods have been proposed to address this problem with a common objective: performing an accurate contour extraction with minimum user effort. For minimal paths techniques, achieving this goal depends critically on the ability of the so-called potential map to capture edges. In this context we propose new patch-based potentials designed to have small values at the boundary of the targeted object. To evaluate these potentials, we consider the livewire framework and quantify their abilities in terms of number of needed seed points. Both visual and quantitative results demonstrated the strong capability of our proposed potentials in reducing the user’s interaction while preserving a good accuracy of extraction.

Keywords

Contour extraction Patch Minimal paths 

References

  1. 1.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24670-1_33CrossRefGoogle Scholar
  2. 2.
    Bougleux, S., Peyré, G., Cohen, L.: Anisotropic geodesics for perceptual grouping and domain meshing. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 129–142. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88688-4_10CrossRefGoogle Scholar
  3. 3.
    Chen, D., Mirebeau, J.M., Cohen, L.D.: Global minimum for curvature penalized minimal path method. In: BMVC, pp. 86–86 (2015)Google Scholar
  4. 4.
    Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)CrossRefGoogle Scholar
  5. 5.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. IJCV 24(1), 57–78 (1997)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans. Med. Imag. 19(1), 55–62 (2000)CrossRefGoogle Scholar
  8. 8.
    Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: CVPR, pp. 3129–3136 (2010)Google Scholar
  9. 9.
    Kang, H.W.: G-wire: a livewire segmentation algorithm based on a generalized graph formulation. Pattern Recogn. Lett. 26(13), 2042–2051 (2005)CrossRefGoogle Scholar
  10. 10.
    Liu, D., Xiong, Y., Shapiro, L., Pulli, K.: Robust interactive image segmentation with automatic boundary refinement. In: ICIP, pp. 225–228 (2010)Google Scholar
  11. 11.
    Mille, J., Bougleux, S., Cohen, L.D.: Combination of piecewise-geodesic paths for interactive segmentation. IJCV 112(1), 1–22 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Miranda, P.A.V., Falcão, A.X., Spina, T.V.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 191–198 (1995)Google Scholar
  14. 14.
    Peyré, G., Pechaud, M., Keriven, R., Cohen, L.: Geodesic methods in computer vision and graphics. Found. Trends Comput. Graph. Vis. 5(3–4), 197–397 (2010)zbMATHGoogle Scholar
  15. 15.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)CrossRefGoogle Scholar
  16. 16.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Spina, T.V., Falcão, A.X.: Robot users for the evaluation of boundary-tracking approaches in interactive image segmentation. In: ICIP, pp. 3248–3252 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Thoraya Ben Chattah
    • 1
    • 2
  • Sébastien Bougleux
    • 1
    Email author
  • Olivier Lézoray
    • 1
  • Atef Hamouda
    • 2
  1. 1.Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYCCaenFrance
  2. 2.University of Tunis El Manar, Faculty of Siences of Tunis, LIPAH-LR11ES14TunisTunisia

Personalised recommendations