Analytical Optimal Control

  • Ashish Tewari
Part of the Control Engineering book series (CONTRENGIN)


Optimization refers to the process of achieving the best possible result (objective), given the circumstances (constraints). When applied to determine a control strategy for fulfilling a desired task, such an optimization is called optimal control .


  1. 13.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  2. 34.
    Goh, B.S.: Compact forms of the generalized Legendre conditions and the derivation of the singular extremals. In: Proceedings of 6th Hawaii International Conference on System Sciences, pp. 115–117 (1973)Google Scholar
  3. 42.
    Jacobson, D.H.: A new necessary condition of optimality for singular control problems. SIAM J. Control 7, 578–595 (1969)MathSciNetCrossRefGoogle Scholar
  4. 46.
    Kelley, H.J., Kopp, R.E., Moyer, H.G.: Singular extremals. In: Leitmann, G. (ed.) Topics in Optimization, pp. 63–101. Academic, New York (1967)CrossRefGoogle Scholar
  5. 59.
    Mattheij, R.M.M., Molenaar, J.: Ordinary Differential Equations in Theory and Practice. SIAM Classics in Applied Mathematics, vol. 43. SIAM, Philadelphia (2002)Google Scholar
  6. 68.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)Google Scholar
  7. 72.
    Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  8. 74.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  9. 77.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashish Tewari
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of Technology, KanpurIIT-KanpurIndia

Personalised recommendations