From Molecular Symmetry Breaking to Symmetry Restoration by Attosecond Quantum Control

  • ChunMei Liu
  • Jörn ManzEmail author
  • Jean Christophe Tremblay
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)


It is well known that laser pulses can break electronic structure symmetry of atoms and molecules, specifically by superposing two (or more) states with different irreducible representations (IRREPs). Recently, our theory group together with the experimental group of Professor Kenji Ohmori, our partner at the Institute for Molecular Science in Okazaki, have shown that laser pulses can also achieve the reverse process, symmetry restoration. For this purpose, the pulse for symmetry restoration was designed as a copy of the pulse for symmetry breaking, with attosecond precision of the proper time delay. Here we develop the theory for new scenarios coherent molecular symmetry breaking and restoration. The extensions are from previous applications of weak circularly polarized ultrafast (fs) laser pulses with Gaussian shapes to intense linearly polarized ultrafast laser pulses that do not need to be transform-limited, e.g. they may have down- and up-chirps. As a proof-of-principle, quantum dynamics simulations demonstrate restoration of \(D_{6h}\) symmetry of the aligned model benzene molecule, after laser induced \(D_{6h} \rightarrow C_{2v}\) symmetry breaking. The success depends on two criteria: (i) the laser pulse that restores symmetry is designed as a time-reversed copy of the pulse that breaks symmetry; and (ii) their time delay must be chosen with attosecond precision such that the wavefunction at the central time between the pulses is a superposition of two states with different IRREPs but with the same or with opposite phases (modulo \(2\pi \)).



One of us (J. M.) would like to express his gratitude to Professor Kenji Ohmori and to Dr. Noboyuki Takei (Institute for Molecular Science IMS, Okazaki, Japan) for stimulating discussions, and also for wonderful hospitality during his visits to the IMS in March and in July, 2017. Generous financial support by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the Program for Changjiang Scholars and Innovative Research Team (IRT13076), the National Natural Science Foundation of China (Grant No. 11434007), the National Science Foundation of China (Grant No. 61505100), the China Scholarship Council, the Deutsche Forschungsgemeinschaft (project Tr 1109/2-1) are also gratefully acknowledged.


  1. 1.
    C. Liu, J. Manz, K. Ohmori, S. Sommer, N. Takei, J.C. Tremblay, Y. Zhang, Attosecond control of electronic structure symmetry restoration. Phys. Rev. Lett. 121,173201 (2018)Google Scholar
  2. 2.
    T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    M. Quack, Adv. Chem. Phys. 157, 247 (2014)Google Scholar
  4. 4.
    N.S. Mankoc̆ Bors̆tnik, Phys. Rev. D 91, 065004 (2015)Google Scholar
  5. 5.
    M. Yu, Ivanov, P.B. Corkum, P. Dietrich, Laser Phys. 3, 375 (1993)Google Scholar
  6. 6.
    N. Elghobashi, L. González, J. Manz, J. Chem. Phys. 120, 8002 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Arasaki, K. Takatsuka, Phys. Chem. Chem. Phys. 12, 1239 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Arasaki, K. Wang, V. McKoy, K. Takatsuka, Phys. Chem. Chem. Phys. 13, 8681 (2011)CrossRefGoogle Scholar
  9. 9.
    A.S. Alnaser, M. Kübel, R. Siemering, B. Bergues, N.G. Kling, K.J. Betsch, Y. Deng, J. Schmidt, Z.A. Alahmed, A.M. Azzer, J. Ullrich, I. Ben-Itzhak, R. Moshammer, U. Kleineberg, F. Krausz, R. de Vivie-Riedle, M.F. Kling, Nat. Commun. 5, 3800 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Pertot, C. Schmidt, M. Matthews, A. Chauvet, M. Huppert, V. Svoboda, A. Conta, A. Tehlar, D. Baykusheva, J.-P. Wolf, H.J. Wörner, Science 355, 264 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    T. Schultz, M. Vrakking, Attosecond and XUV Physics (Wiley-VCH, Weinheim, 2014)CrossRefGoogle Scholar
  16. 16.
    G. Alber, H. Ritsch, P. Zoller, Phys. Rev. A 34, 1058 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    L.D. Noordam, D.I. Duncam, T.F. Gallagher, Phys. Rev. A 45, 4734 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    N.V. Golubev, V. Despré, A.I. Kuleff, J. Mod. Opt. 64, 1031 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    I. Barth, J. Manz, Angew. Chem. Int. Ed. 45, 2962 (2006)CrossRefGoogle Scholar
  20. 20.
    D. Jia, J. Manz, Y. Yang, J. Mod. Opt. 64, 960 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M. Kanno, H. Kono, Y. Fujimura, Angew. Chem. Int. Ed. 45, 7995 (2006)CrossRefGoogle Scholar
  22. 22.
    H. Mineo, S.H. Lin, Y. Fujimura, Chem. Phys. 442, 103 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Takei, C. Sommer, C. Genes, G. Pupillo, H. Goto, K. Koyasu, H. Chiba, M. Weidemüller, K. Ohmori, Nat. Commun. 7, 13449 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, T. Baumert, Opt. Express 19, 11638 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    I.S. Ulusoy, M. Nest, J. Am. Chem. Soc. 133, 20230 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Hermann, C. Liu, J. Manz, B. Paulus, J.F. Pérez-Torres, V. Pohl, J.C. Tremblay, J. Phys. Chem. A 120, 5360 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Hermann, C. Liu, J. Manz, B. Paulus, V. Pohl, J.C. Tremblay, Chem. Phys. Lett. 683, 553 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    V. Pohl, G. Hermann, J.C. Tremblay, J. Comput. Chem. 38, 1515 (2017)CrossRefGoogle Scholar
  29. 29.
    G. Hermann, V. Pohl, J.C. Tremblay, B. Paulus, H.-C. Hege, A. Schild, J. Comput. Chem. 37, 1511 (2016)CrossRefGoogle Scholar
  30. 30.
    V. Despré, A. Marciniak, V. Loriot, M.C.E. Galbraith, A. Rouzée, M.J.J. Vrakking, F. Lépine, A.I. Kuleff, J. Phys. Chem. Lett. 6, 426 (2015)CrossRefGoogle Scholar
  31. 31.
    E. Schrödinger, Ann. Phys. (Leipzig, Ger.) 81, 109 (1926)ADSCrossRefGoogle Scholar
  32. 32.
    H. Eyring, J. Walter, G.E. Kimball, Quantum Chemistry (Wiley, New York, 1944), pp. 198–200Google Scholar
  33. 33.
    R. Weinkauf, P. Schanen, D. Yang, S. Soukara, E.W. Schlag, J. Phys. Chem. 99, 11255 (1995)CrossRefGoogle Scholar
  34. 34.
    L.S. Cederbaum, J. Zobeley, Chem. Phys. Lett. 307, 205 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    S. Chelkowski, G.L. Yudin, A.D. Bandrauk, J. Phys. B.: At. Mol. Opt. Phys. 39, S409 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    F. Remacle, R.D. Levine, PNAS 103, 6793 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    P.M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horný, E.F. Penka, G. Grassi, O.I. Tolstikhin, J. Schneider, F. Jensen, L.B. Madsen, A.D. Bandrauk, F. Remacle, H.J. Wörner, Science 350, 790 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    D. Jia, J. Manz, B. Paulus, V. Pohl, J.C. Tremblay, Y. Yang, Chem. Phys. 482, 146 (2017)CrossRefGoogle Scholar
  39. 39.
    H. Ding, D. Jia, J. Manz, Y. Yang, Molec. Phys. 115, 1813 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    D.J. Diestler, G. Hermann, J. Manz, J. Phys. Chem. A 121, 5332 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Chelkowski, T. Bredtmann, A.D. Bandrauk, Phys. Rev. A 85, 033404 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    W.P. Schleich, H. Walther (eds.), Elements of Quantum Information (Wiley-VCH, Weinheim, 2007)zbMATHGoogle Scholar
  43. 43.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    M. Shapiro, P. Brumer, Quantum Control of Molecular Processes, 2nd edn. (Wiley-VCH, Weinheim, 2012)zbMATHGoogle Scholar
  45. 45.
    K. Nakajima, H. Abe, Y. Ohtsuki, J. Phys. Chem. A 116, 11219 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • ChunMei Liu
    • 1
  • Jörn Manz
    • 1
    • 2
    • 3
    Email author
  • Jean Christophe Tremblay
    • 1
  1. 1.Institut für Chemie und BiochemieFreie Universität BerlinBerlinGermany
  2. 2.State Key Laboratory of Quantum Optics and Quantum Optics DevicesInstitute of Laser Spectroscopy, Shanxi UniversityTaiyuanChina
  3. 3.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations