Advertisement

Elucidating the Origins of Vibrational Coherences of Polyatomic Molecules Induced by Intense Laser Fields

  • Zhengrong Wei
  • Jialin Li
  • Lin Wang
  • Soo Teck See
  • Mark Hyunpong Jhon
  • Yingfeng Zhang
  • Fan Shi
  • Minghui Yang
  • Zhi-Heng LohEmail author
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)

Abstract

Strong-field laser-molecule interaction can be used to trigger and probe ultrafast quantum dynamics. Previous studies aimed at elucidating the origins of vibrational coherences induced by intense laser fields have been performed on diatomic molecules. Furthermore, in all cases examined to date, vibrational wave packet motion is found to be induced by R-selective depletion; wave packet motion launched by bond softening, though theoretically predicted, remains hitherto unobserved. Here, we exploit the exquisite sensitivity of femtosecond extreme ultraviolet absorption spectroscopy to sub-picometer structural changes to observe both bond softening-induced vibrational wave packets, launched by the interaction of intense laser pulses with iodomethane, as well as multimode vibrational motion of the parent ion produced by strong-field ionization. In addition, we show that the time-dependent wave packet-induced modulation of extreme ultraviolet transition energies directly furnish vibronic coupling strengths involving core-level transitions, from which geometrical parameters of transient core-excited states can be obtained.

Notes

Acknowledgements

This work is supported by a NTU start-up grant, the A*Star Science and Engineering Research Council Public Sector Funding (122-PSF-0011 and 122 360 0008), the Ministry of Education Academic Research Fund (MOE2014-T2-2-052 and RG105/17), and the award of a Nanyang Assistant Professorship to Z.-H.L. M.Y. acknowledges the financial support from National Natural Science of China (NSFC, Project No. 21373266). We are grateful to K. Yamanouchi, T. Kobayashi, S. L. Chin, and D. Mathur for useful discussions.

References

  1. 1.
    T. Brabec, F. Krausz, Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    T. Popmintchev, M.-C. Chen, P. Arpin, M.M. Murnane, H.C. Kapteyn, The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822–832 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    D.B. Milošević, G.G. Paulus, D. Bauer, W. Becker, Above-threshold ionization by few-cycle pulses. J. Phys. B 39, R203 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavičić, H.C. Bandulet et al., Laser-induced electron tunneling and diffraction. Science 320, 1478 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.C. Kieffer et al., Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri et al., Generalized molecular orbital tomography. Nat. Phys. 7, 822–826 (2011)CrossRefGoogle Scholar
  7. 7.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum et al., High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste et al., Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010)CrossRefGoogle Scholar
  9. 9.
    A.E. Boguslavskiy, J. Mikosch, A. Gijsbertsen, M. Spanner, S. Patchkovskii, N. Gador et al., The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Wörner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    C.I. Blaga, J. Xu, A.D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini et al., Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirilă et al., Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    F. Lépine, M.Y. Ivanov, M.J.J. Vrakking, Attosecond molecular dynamics: fact or fiction? Nat. Photon. 8, 195–204 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    P.M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horný, E.F. Penka et al., Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    I.K. Alexander, S.C. Lorenz, Ultrafast correlation-driven electron dynamics. J. Phys. B 47, 124002 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Sheehy, L.F. DiMauro, Atomic and molecular dynamics in intense optical fields. Annu. Rev. Phys. Chem. 47, 463 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Posthumus, The dynamics of small molecules in intense laser fields. Rep. Prog. Phys. 67, 623 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    B.J. Sussman, D. Townsend, M.Y. Ivanov, A. Stolow, Dynamic stark control of photochemical processes. Science 314, 278–281 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    M.E. Corrales, J. González-Vázquez, G. Balerdi, I.R. Solá, R. de Nalda, L. Bañares, Control of ultrafast molecular photodissociation by laser-field-induced potentials. Nat. Chem. 6, 785–790 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Fang, G.N. Gibson, Investigating excited electronic states of I2+ and I22+ produced by strong-field ionization using vibrational wave packets. Phys. Rev. A 75, 063410 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    E. Goll, G. Wunner, A. Saenz, Formation of ground-state vibrational wave packets in intense ultrashort laser pulses. Phys. Rev. Lett. 97, 103003 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A. Saenz, Enhanced ionization of molecular hydrogen in very strong fields. Phys. Rev. A 61, 051402 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    T. Ergler, B. Feuerstein, A. Rudenko, K. Zrost, C.D. Schröter, R. Moshammer et al., Quantum-phase resolved mapping of ground-state vibrational D2 wave packets via selective depletion in intense laser pulses. Phys. Rev. Lett. 97, 103004 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    L. Fang, G.N. Gibson, Strong-field induced vibrational coherence in the ground electronic state of hot I2. Phys. Rev. Lett. 100, 103003 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    E.R. Hosler, S.R. Leone, Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy. Phys. Rev. A 88, 023420 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    L. Dhar, J.A. Rogers, K.A. Nelson, Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994)CrossRefGoogle Scholar
  27. 27.
    Z.-H. Loh, S.R. Leone, Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy. J. Phys. Chem. Lett. 4, 292–302 (2013)CrossRefGoogle Scholar
  28. 28.
    A.R. Attar, A. Bhattacherjee, C.D. Pemmaraju, K. Schnorr, K.D. Closser, D. Prendergast et al., Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    P. Andersen, T. Andersen, F. Folkmann, V.K. Ivanov, H. Kjeldsen, J.B. West, Absolute cross sections for the photoionization of 4d electrons in Xe+ and Xe2+ ions. J. Phys. B 34, 2009–2019 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    D.L. Ederer, M. Manalis, Photoabsorption of the 4d electrons in xenon. J. Opt. Soc. Am. 65, 634–637 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    J. Seely, B. Kjornrattanawanich, Measurement of extreme-ultraviolet attenuation edges of magnesium, tin, and indium filters. Appl. Opt. 42, 6374–6381 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    T.N. Olney, G. Cooper, C.E. Brion, Quantitative studies of the photoabsorption (4.5–488 eV) and photoionization (9–59.5 eV) of methyl iodide using dipole electron impact techniques. Chem. Phys. 232, 211–237 (1998)CrossRefGoogle Scholar
  33. 33.
    G. O’Sullivan, C. McGuinness, J.T. Costello, E.T. Kennedy, B. Weinmann, Trends in 4d-subshell photoabsorption along the iodine isonuclear sequence: I, I+ and I2+. Phys. Rev. A 53, 3211–3226 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    J.N. Cutler, G.M. Bancroft, K.H. Tan, Ligand-field splittings and core-level linewidths in I 4d photoelectron spectra of iodine molecules. J. Chem. Phys. 97, 7932–7943 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    R. Locht, D. Dehareng, K. Hottmann, H.W. Jochims, H. Baumgärtel, B. Leyh, The photoionization dynamics of methyl iodide (CH3I): a joint photoelectron and mass spectrometric investigation. J. Phys. B 43, 105101 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Wei, J. Li, S.T. See, Z.-H. Loh, Spin-orbit state-selective c-i dissociation dynamics of the CH3I + X̃ electronic state induced by intense few-cycle laser fields. J. Phys. Chem. Lett. 8, 6067–6072 (2017)CrossRefGoogle Scholar
  37. 37.
    Z. Wei, J. Li, L. Wang, S.-T. See, M.H. Jhon, Y. Zhang, F. Shi, M. Yang, Z.-H. Loh, Elucidating the origins of multimode vibrational coherences of polyatomic molecules induced by intense laser fields. Nat. Commun. 8, 735 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    R. de Nalda, J. Durá, A. García-Vela, J.G. Izquierdo, J. González-Vázquez, L. Bañares, A detailed experimental and theoretical study of the femtosecond A-band photodissociation of CH3I. J. Chem. Phys. 128, 244309 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated vol I (National Bureau of Standards, 1972)Google Scholar
  40. 40.
    J.L. Duncan, A.M. Ferguson, S. Mathews, Vibrational anharmonicity in CH3I: a joint local and normal mode study. J. Chem. Phys. 91, 783–790 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    M. Lee, Y.J. Bae, M.S. Kim, K selection in one-photon mass-analyzed threshold ionization of CH3I and CD3I to the 2E3/2 state cations. J. Chem. Phys. 128, 044310 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    D. Geißler, B.J. Pearson, T. Weinacht, Wave packet driven dissociation and concerted elimination in CH2I2. J. Chem. Phys. 127, 204305 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    A. Rudenko, V. Makhija, A. Vajdi, T. Ergler, M. Schürholz, R.K. Kushawaha et al., Strong-field-induced wave packet dynamics in carbon dioxide molecule. Farad. Discuss. 194, 463–478 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    H. Matsuura, J. Overend, Equilibrium structure of methyl iodide. J. Chem. Phys. 56, 5725–5727 (1972)ADSCrossRefGoogle Scholar
  46. 46.
    Y.J. Bae, M.S. Kim, Photodissociation spectroscopy of CD3I+ generated by mass-analyzed threshold ionization for structure determination. ChemPhysChem 9, 1709–1714 (2008)CrossRefGoogle Scholar
  47. 47.
    A. Yabushita, T. Kobayashi, Primary conformation change in bacteriorhodopsin on photoexcitation. Biophys. J. 96, 1447–1461 (2009)CrossRefGoogle Scholar
  48. 48.
    K. Huang, A. Rhys, Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. Lond. Ser. A 204, 406–423 (1950)Google Scholar
  49. 49.
    M. Lax, The Franck-Condon principle and its application to crystals. J. Chem. Phys. 20, 1752–1760 (1952)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    K.P. Huber, G. Herzberg, Constants of Diatomic Molecules in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. (National Institute of Standards and Technology) (1979)Google Scholar
  51. 51.
    P.J. Brannon, C.H. Church, C.W. Peters, Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride. J. Mol. Spectrosc. 27, 44–54 (1968)ADSCrossRefGoogle Scholar
  52. 52.
    D.M. Bishop, R.W. Wetmore, Vibrational spacings for H2+, D2+ and H2. Mol. Phys. 26, 145–157 (1973)ADSCrossRefGoogle Scholar
  53. 53.
    S.G. Walt, N.B. Ram, A. von Conta, O.I. Tolstikhin, L.B. Madsen, F. Jensen et al., Role of multi-electron effects in the asymmetry of strong-field ionization and fragmentation of polar molecules: the methyl halide series. J. Phys. Chem. A 119, 11772–11782 (2015)CrossRefGoogle Scholar
  54. 54.
    L.S. Karlsson, R. Jadrny, L.H. Mattsson, F.T. Chau, K. Siegbahn, Vibrational and vibronic structure in the valence electron spectra of CH3X molecules (X = F, Cl, Br, I, OH). Phys. Scripta 16, 225 (1977)ADSCrossRefGoogle Scholar
  55. 55.
    J.P. Farrell, S. Petretti, J. Förster, B.K. McFarland, L.S. Spector, Y.V. Vanne et al., Strong field ionization to multiple electronic states in water. Phys. Rev. Lett. 107, 083001 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    T. Ando, A. Shimamoto, S. Miura, K. Nakai, H. Xu, A. Iwasaki et al., Wave packet bifurcation in ultrafast hydrogen migration in CH3OH+ by pump-probe coincidence momentum imaging with few-cycle laser pulses. Chem. Phys. Lett. 624, 78–82 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    C.T. Chen, Y. Ma, F. Sette, K-shell photoabsorption of the N2 molecule. Phys. Rev. A 40, 6737–6740 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    R. Püttner, M. Domke, D. Lentz, G. Kaindl, Si 2p photoabsorption in SiH4 and SiD4: molecular distortion in core-excited silane. Phys. Rev. A 56, 1228–1239 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    G. O’Sullivan, The absorption spectrum of CH3I in the extreme VUV. J. Phys. B 15, L327–L330 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    P. Norman, H. Ågren, Geometry optimization of core electron excited molecules. J. Mol. Struc. 401, 107–115 (1997)CrossRefGoogle Scholar
  61. 61.
    A.B. Trofimov, E.V. Gromov, T.E. Moskovskaya, J. Schirmer, Theoretical evidence for a bound doubly-excited 1B2 (C 1 s, n → π*2) state in H2CO below the C 1 s ionization threshold. J. Chem. Phys. 113, 6716–6723 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    B. Erk, R. Boll, S. Trippel, D. Anielski, L. Foucar, B. Rudek et al., Imaging charge transfer in iodomethane upon X-ray photoabsorption. Science 345, 288 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    B.K. McFarland, J.P. Farrell, S. Miyabe, F. Tarantelli, A. Aguilar, N. Berrah et al., Ultrafast X-ray auger probing of photoexcited molecular dynamics. Nat. Commun. 5, 4235 (2014)CrossRefGoogle Scholar
  64. 64.
    E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev et al., Real-time observation of valence electron motion. Nature 466, 739–743 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhengrong Wei
    • 1
  • Jialin Li
    • 1
  • Lin Wang
    • 1
  • Soo Teck See
    • 1
  • Mark Hyunpong Jhon
    • 2
  • Yingfeng Zhang
    • 3
  • Fan Shi
    • 3
  • Minghui Yang
    • 3
  • Zhi-Heng Loh
    • 1
    • 4
    Email author
  1. 1.Division of Chemistry and Biological Chemistry, Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute of High Performance Computing, A*STARSingaporeSingapore
  3. 3.Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
  4. 4.Centre for Optical Fibre TechnologyThe Photonics Institute, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations