Linear and Nonlinear Optics in Coherently Spinning Molecules

  • O. FaucherEmail author
  • E. Hertz
  • B. Lavorel
  • F. Billard
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)


Over the last two decades, coherently spinning molecules induced by laser have been a subject of current growing interest motivated by their unique individual and collective properties. From a fundamental aspect, spinning molecules had also led to a better understanding of the mechanisms at play when molecular rotors are strongly driven by an external field. In this chapter, we describe new strategies for designing laser pulses enabling the production of spinning molecules. Two rationalized approaches are first discussed highlighting major assets and flaws. In order to implement them, simple and compact optical arrangements are proposed together with the use of a pulse shaper device that provides a greater flexibility. A more sophisticated strategy relying on a non-standard pulse shaper arrangement is also discussed. Laser pulses exhibiting a twisted linear polarization are then applied to control the rotation of linear molecules subsequently used as ultrafast phase modulators. The rotational Doppler shifts resulting from the linear and nonlinear scattering of a circularly polarized laser pulse with fast spinning molecules are investigated both experimentally and numerically.



Thanks are due to present and former Ph.D. students and postdoc fellowships G. Karras, M. Ndong, E. Prost, and H. Zhang for their contributions to a part of the work presented in this chapter. We would also like to thank I. S. Averbukh, P. Béjot, A. A. Milner, V. A. Milner, D. Sugny, and J. Zyss for their collaboration and valuable contributions.


  1. 1.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Kckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrggen, D. Sugny, F.K. Wilhelm, Eur. Phys. J. D. 69(12), 279 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    T. Brixner, G. Gerber, ChemPhysChem. 4(5), 418 (2003)CrossRefGoogle Scholar
  4. 4.
    B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74(23), 4623 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75(2), 543 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, Phys. Rev. Lett. 90(8), 083001/1 (2003)Google Scholar
  7. 7.
    I. Nevo, L. Holmegaard, J.H. Nielsen, J.L. Hansen, H. Stapelfeldt, F. Filsinger, G. Meijer, J. Kupper, Phys. Chem. Chem. Phys. 11(42), 9912 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Lapert, E. Hertz, S. Guérin, D. Sugny, Phys. Rev. A 80, 051403 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M.Z. Hoque, M. Lapert, E. Hertz, F. Billard, D. Sugny, B. Lavorel, O. Faucher, Phys. Rev. A 84, 013409 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L. Yuan, S.W. Teitelbaum, A. Robinson, A.S. Mullin, Proc. Natl. Acad. Sci. U.S.A. 108(17), 6872 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Korobenko, A.A. Milner, V. Milner, Phys. Rev. Lett. 112(11), 113004 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    O. Korech, U. Steinitz, R.J. Gordon, I.S. Averbukh, Y. Prior, Nat. Photon. 7(9), 711 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    U. Steinitz, Y. Prior, I.S. Averbukh, Phys. Rev. Lett. 112(1), 013004 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Milner, A. Korobenko, J. Flo, I.S. Averbukh, V. Milner, Phys. Rev. Lett. 115(3), 033005 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Khodorkovsky, U. Steinitz, J.M. Hartmann, I.S. Averbukh, Nat. Commun. 6 (2015)Google Scholar
  16. 16.
    K. Mizuse, K. Kitano, H. Hasegawa, Y. Ohshima, Sci. Adv. 1(6) (2015)Google Scholar
  17. 17.
    M.J. Murray, H.M. Ogden, C. Toro, Q. Liu, D.A. Burns, M.H. Alexander, A.S. Mullin, J. Phys. Chem. A 119(50), 12471 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Lin, Q. Song, X. Gong, Q. Ji, H. Pan, J. Ding, H. Zeng, J. Wu, Phys. Rev. A 92(1), 013410 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A. Korobenko, V. Milner, Phys. Rev. Lett. 116(18), 183001 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Milner, A. Korobenko, V. Milner, Phys. Rev. Lett. 118(24), 243201 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    E. Gershnabel, I.S. Averbukh, Phys. Rev. Lett. 120(8), 083204 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    I. Tutunnikov, E. Gershnabel, S. Gold, I.S. Averbukh, J. Phys. Chem. Lett. 9:1105–1111 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Karczmarek, J. Wright, P. Corkum, M. Ivanov, Phys. Rev. Lett. 82(17), 3420 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    D.M. Villeneuve, S.A. Aseyev, P. Dietrich, M. Spanner, M.Y. Ivanov, P.B. Corkum, Phys. Rev. Lett. 85(3), 542 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    G. Karras, M. Ndong, E. Hertz, D. Sugny, F. Billard, B. Lavorel, O. Faucher, Phys. Rev. Lett. 114(10), 103001 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Zhdanovich, A.A. Milner, C. Bloomquist, J. Floss, I.S. Averbukh, J.W. Hepburn, V. Milner, Phys. Rev. Lett. 107(24), 243004 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    C. Bloomquist, S. Zhdanovich, A.A. Milner, V. Milner, Phys. Rev. A 86(6), 063413 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Fleischer, Y. Khodorkovsky, Y. Prior, I.S. Averbukh, New. J. Phys. 11, 105039 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    K. Kitano, H. Hasegawa, Y. Ohshima, Phys. Rev. Lett. 103(22), 223002 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Khodorkovsky, K. Kitano, H. Hasegawa, Y. Ohshima, I.S. Averbukh, Phys. Rev. A 83(2), 023423 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    O. Faucher, E. Prost, E. Hertz, F. Billard, B. Lavorel, A.A. Milner, V.A. Milner, J. Zyss, I.S. Averbukh, Phys. Rev. A 94(5), 051402(R) (2016)ADSCrossRefGoogle Scholar
  32. 32.
    E. Prost, H. Zhang, E. Hertz, F. Billard, B. Lavorel, P. Bejot, J. Zyss, I.S. Averbukh, O. Faucher, Phys. Rev. A 96(4), 043418 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    E. Skantzakis, S. Chatziathanasiou, P.A. Carpeggiani, G. Sansone, A. Nayak, D. Gray, P. Tzallas, D. Charalambidis, E. Hertz, O. Faucher, Sci. Rep. 6, 39295 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Weiner, Opt. Comm. 284, 3669 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    T. Brixner, G. Gerber, Opt. Lett. 8(26), 557 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    K. Misawa, Adv. Phys. X 1(4), 544 (2016)Google Scholar
  37. 37.
    T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, Phys. Rev. Lett. 92(20), 208301 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    M. Plewicki, S.M. Weber, F. Weise, A. Lindinger, Appl. Phys. B 86(2), 259 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    E. Hertz, F. Billard, G. Karras, P. Béjot, B. Lavorel, O. Faucher, Opt. Exp. 24(24), 27702 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)Google Scholar
  41. 41.
    R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley-Interscience, New York, 1988)Google Scholar
  42. 42.
    G. Herzberg, Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules, vol. 1 (Van Nostrand Reinhold Company, New York, 1950)Google Scholar
  43. 43.
    B.A. Garetz, J. Opt. Soc. Am. 71(5), 609 (1981)ADSCrossRefGoogle Scholar
  44. 44.
    I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. Lett. 78(13), 2539 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    P.J. Allen, Am. J. Phys. 34(12), 1185 (1966)ADSCrossRefGoogle Scholar
  46. 46.
    B.A. Garetz, S. Arnold, Opt. Commun. 31(1), 1 (1979)ADSCrossRefGoogle Scholar
  47. 47.
    F. Bretenaker, A. Le Floch, Phys. Rev. Lett. 65(18), 2316 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    J. Courtial, D.A. Robertson, K. Dholakia, L. Allen, M.J. Padgett, Phys. Rev. Lett. 81(22), 4828 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    V. Renard, M. Renard, S. Guérin, Y.T. Pashayan, B. Lavorel, O. Faucher, H.R. Jauslin, Phys. Rev. Lett. 90(15), 153601 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    A. Rouzée, E. Hertz, B. Lavorel, O. Faucher, J. Phys. B 41, 074002 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    G. Maroulis, J. Chem. Phys. 118(6), 2673 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    G. Li, T. Zentgraf, S. Zhang, Nat. Phys. 12(8), 736 (2016)CrossRefGoogle Scholar
  53. 53.
    H.J. Simon, N. Bloembergen, Phys. Rev. 171(3), 1104 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire Interdisciplinaire CARNOT de BourgogneUMR 6303 CNRS-Université Bourgogne Franche-ComtéDijon CedexFrance

Personalised recommendations