Advertisement

Lightwave-Driven Electronic Phenomena in Solids Observed by Attosecond Transient Absorption Spectroscopy

  • Katsuya Oguri
  • Hiroki Mashiko
  • Akira Suda
  • Hideki Gotoh
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)

Abstract

Steering electronic motion in solid state materials by light with unprecedented speed is the ultimate goal in the field of ultrafast physics and devices. Recent trends toward this goal are promoting extensive exploration of various lightwave-driven electric phenomena whose characteristic response occurs on a time scale comparable to the sub-cycle of lightwaves. Clarifying the comprehensive dynamics of lightwave-driven electric phenomena and pioneering its application to electronic functionality in solid state devices, require development of various diagnostic techniques with attosecond temporal resolution. Currently, attosecond transient absorption spectroscopy based on an isolated attosecond pulse (IAP) source is one of the most promising techniques. In this chapter, we will review a new scheme for lightwave-pulse-pump and IAP-probe attosecond transient absorption spectroscopy for solids. This scheme utilizes a quantum interference effect that appears in IAP absorption, which is induced by the simultaneous transition from the lightwave-coupled valence and conduction bands to a high-energy conduction band. We discuss the scheme based on an intuitively comprehensible approach that approximates a semiconductor band structure as a multi-eigenstate system in a theoretical formulation of the optical Bloch equation. The validity of the scheme is demonstrated by our recent experimental observation of third-order polarization in a wide-gap GaN semiconductor, which is well reproduced by the numerical simulation. This first observation of electronic oscillation beyond 1 PHz in a solid state system clearly shows the potential of future petahertz signal processing technology based on ordinary semiconductor devices.

Notes

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant No. 25706027, 23310086, 16H05987, and 16H02120.

References

  1. 1.
    F. Krausz, M.I. Stockman, Attosecond metrology: from electron capture to future signal processing. Nature Photon. 8, 205–213 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    O.D. Mücke, Petahertz electronics: Pick up speed. Nature Phys. 12, 724–725 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    S. Ghimire, A.D. Dichiara, E. Sistrunk, P. Agostini, L.F. Dimauro, D.A. Reis, Observation of high-order harmonic generation in a bulk crystal. Nat. Phy. 7, 138–141 (2011)CrossRefGoogle Scholar
  4. 4.
    T.T. Luu, M. Garg, SYu. Kruchinin, MTh Hassan, E. Goulielmakis, Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    G. Vampa, T.J. Hammond, N. Thiré, B.E. Schmit, F. Légaré, C.R. McDonald, T. Brabec, P.B. Corkum, Linking high harmonics from gases and solids. Nature 522, 462–466 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S.W. Koch, R. Huber, Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    N. Yoshikawa, T. Tamaya, K. Tanaka, High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J.V. Barth, R. Kienberger, R. Ernstorfer, V.S. Yakovlev, M.I. Stockman, F. Krausz, Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T. Rybka, M. Ludwig, M.F. Schmalz, V. Knittel, D. Brida, A. Leitenstorfer, Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–671 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    T. Higuchi, C. Heide, K. Ullmann, H.B. Weber, P. Hommelhoff, Light-field-driven currents in graphene. Nature 550, 224–228 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M. Schultze, E.M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V.S. Yakovlev, M.I. Stockman, F. Krausz, Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Lucchini, S.A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, U. Keller, Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    P.B. Corkum, Plasma Perspective on Strong-Field Multiphoton Ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    P.B. Corkum, F. Krausz, Attosecond Science. Nat. Phys. 3, 381–387 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Garg, M. Zhan, T.T. Luu, H. Lakhotia, T. Klostermann, A. Guggenmos, E. Gouliermakis, Multi-petahertz electronic metrology. Nature 538, 359–363 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    D. Golde, T. Meier, and S.W. Koch, High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330-1-6 (2008)Google Scholar
  17. 17.
    T. Higuchi, M.I. Stockman, and P. Hommelhoff, Strong-Field Perspective on High-Harmonic Radiation from Bulk Solids. Phys. Rev. Lett. 113, 213901-1-5 (2014)Google Scholar
  18. 18.
    M. Wu, S. Ghimire, D.A. Reis, K.J. Schafer, M.B. Gaarde, High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839-1-11 (2015)Google Scholar
  19. 19.
    M. Schultze, K. Ramasesha, C.D. Pemmaraju, S.A. Sato, D. Whitmore, A. Gandman, J.S. Prell, L.J. Borja, D. Prendergast, K. Yabana, D.M. Neumark, S.R. Leone, Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    H. Mashiko, K. Oguri, T. Yamaguchi, A. Suda, H. Gotoh, Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Sommer, E.M. Bothschafter, S.A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V.S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz, Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534, 86–90 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Lee, P.H. Citrin, P. Eisenberger, B.M. Kincaid, Extended x-ray absorption fine structure-its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769–806 (1981)ADSCrossRefGoogle Scholar
  23. 23.
    H. Nakano, Y. Goto, P. Lu, T. Nishikawa, N. Uesugi, Time-resolved soft x-ray absorption spectroscopy of silicon using femtosecond laser plasma x rays. Appl. Phys. Lett. 75, 2350–2352 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    C. Bressler, M. Chergui, Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Pertot, C. Schmidt, M. Matthews, A. Chauvet, M. Huppert, V. Svoboda, A. Conta, A. Tehlar, D. Baykusheva, J.-P. Wolf, H.J. Wörner, Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 264–267 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S. Hughes, Breakdown of the area theorem: carrier-wave rabi flopping of femtosecond optical pulses. Phys. Rev. Lett. 81, 3363–3366 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    T. Tritschler, O.D. Mücke, M. Wegener, Extreme nonlinear optics of two-level systems. Phys. Rev. A 68, 033404 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    P. Meystre, and M. Sargent III, Elements of Quantum Optics (Springer, 1998)Google Scholar
  29. 29.
    M. Wegener, Extreme nonlinear optics in semiconductors, in Optics of Semiconductors and Their Nanostructures (H. Kalt and M. Hetterich (Eds.), Springer 2004)Google Scholar
  30. 30.
    M. Rohlfing, P. Kriiger, J. Pollmann, Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. Phys. Rev. B 48, 17791–17805 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    N.H. Bonadeo, J. Erland, D. Gammon, D. Park, D.S. Katzer, D.G. Steel, Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998)CrossRefGoogle Scholar
  32. 32.
    F. Rossi, T. Kuhn, Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Real-time observation of valence electron motion. Nature 466, 739–744 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F.X. Kärtner, Signatures of carrier-wave Rabi flopping in GaAs. Phys. Rev. Lett. 87, 057401-1-4 (2001)Google Scholar
  35. 35.
    M. Sargent III, S. Ovadia, M.H. Lu, Theory of two-photon multiwave mixing. Phys. Rev. B 32, 1596–1604 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    Y.C. Yeo, T.C. Chong, M.F. Li, Electronic band structures and effective-mass parameters of wurtzite GaN and InN. J. Appl. Phys. 83, 1429–1436 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    P.C. Becker, H.L. Fragnito, C.H. Brito Cruz, R.L. Fork, J.E. Cunningham, J.E. Henry, C.V. Shank, Femtosecond photon echoes from band-to band transitions in GaAs, Phys. Rev. Lett. 61, 1647–1649 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    M.S. Wismer, S. Yu. Kruchinin, M. Ciappina, M.I. Stockman, V.S. Yakovlev, Strong-field resonant dynamics in semiconductors, Phys. Rev. Lett. 116, 197401-1-5 (2016)Google Scholar
  39. 39.
    T. Tamaya, A. Ishikawa, T. Ogawa, K. Tanaka, Diabatic mechanisms of higher-order harmonic generation in solid-state materials under high-intensity electric fields. Phys. Rev. Lett. 116, 016601-1-5 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Katsuya Oguri
    • 1
  • Hiroki Mashiko
    • 1
  • Akira Suda
    • 2
  • Hideki Gotoh
    • 1
  1. 1.Quantum Optical Physics Research Group, Optical Science Laboratory, NTT Basic Research LaboratoriesNTT CorporationAtsugi, KanagawaJapan
  2. 2.Department of Physics, Faculty of Science and TechnologyTokyo University of ScienceNoda, ChibaJapan

Personalised recommendations