Advertisement

Towards Single-Shot XUV-Pump-XUV-Probe Studies

  • I. Orfanos
  • I. Makos
  • N. Tsatrafyllis
  • S. Chatziathanasiou
  • E. Skantzakis
  • D. Charalambidis
  • P. TzallasEmail author
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 118)

Abstract

During the last decades, systematic efforts in ultra-short pulse generation led to the development of table-top sources with the capability of producing such pulses in the extreme-ultraviolet spectral range (XUV). Such pulses have been extensively exploited in the investigation of ultrafast dynamics in all states of matter. Intense XUV radiation, that can induce non-linear processes in the XUV spectral range, advance such studies through time resolved measurements performed by means of XUV-pump-XUV-probe schemes. Although these schemes, as fully perturbative, are highly beneficial for such studies, they are inherited with spectroscopic limitations held by the stability of the experimental conditions and the delay lines of the pump-probe arrangement. Here, we describe an approach which provides high temporal and spectral resolution realized in a single-shot measurement. The approach is based on a recently developed method for measuring the spatially resolved photoionization yield resulting from the interaction of XUV pulses with gas phase media.

References

  1. 1.
    Y. Kobayashi, T. Ohno, T. Sekikawa, Y. Nabekawa, S. Watanabe, Appl. Phys. B 70, 389 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    N.A. Papadogiannis, L.A.A. Nikolopoulos, D. Charalambidis, G.D. Tsakiris, P. Tzallas, K. Witte, Phys. Rev. Lett. 90, 133902 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    N.A. Papadogiannis, L.A.A. Nikolopoulos, D. Charalambidis, G.D. Tsakiris, P. Tzallas, K. Witte, Appl. Phys. B 76, 721 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    N. Miyamoto, M. Kamei, D. Yoshitomi, T. Kanai, T. Sekikawa, T. Nakajima, S. Watanabe, Phys. Rev. Lett. 93, 083903 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Nabekawa, H. Hasegawa, E.J. Takahashi, K. Midorikawa, Phys. Rev. Lett. 94, 043001 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    E.P. Benis, D. Charalambidis, T.N. Kitsopoulos, G.D. Tsakiris, P. Tzallas, Phys. Rev. A 74, 051402(R) (2006)ADSCrossRefGoogle Scholar
  7. 7.
    E.P. Benis, P. Tzallas, L.A.A. Nikolopoulos, M. Kovacev, C. Kalpouzos, D. Charalambidis, G.D. Tsakiris, New J. Phys. 8, 92 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    K. Midorikawa, Y. Nabekawa, A. Suda, Prog. Quant. Elect. 32, 43 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    P. Tzallas, E. Skantzakis, L.A.A. Nikolopoulos, G.D. Tsakiris, D. Charalambidis, Nat. Phys. 7, 781 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Manschwetus, L. Rading, F. Campi, S. Maclot, H. Coudert-Alteirac, J. Lahl, H. Wikmark, P. Rudawski, C.M. Heyl, B. Farkas, T. Mohamed, A. L’Huillier, P. Johnsson, Phys. Rev. A 93, 061402(R) (2016)ADSCrossRefGoogle Scholar
  11. 11.
    S. Chatziathanasiou, S. Kahaly, E. Skantzakis, G. Sansone, R. Lopez-Martens, S. Haessler, K. Varju, G.D. Tsakiris, D. Charalambidis, P. Tzallas, Photonics 10, 3390 (2017)Google Scholar
  12. 12.
    N. Tsatrafyllis, B. Bergues, H. Schröder, L. Veisz, E. Skantzakis, D. Gray, B. Bodi, S. Kuhn, G.D. Tsakiris, D. Charalambidis, P. Tzallas, Sci. Rep. 6, 21556 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    G. Kolliopoulos, B. Bergues, H. Schröder, P.A. Carpeggiani, L. Veisz, G.D. Tsakiris, D. Charalambidis, P. Tzallas, Phys. Rev. A 90, 013822 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    B. Bergues, D.E. Rivas, M. Weidman, A.A. Muschet, W. Helml, A. Guggenmos, V. Pervak, U. Kleineberg, G. Marcus, R. Kienberger, D. Charalambidis, P. Tzallas, H. Schröder, F. Krausz, L. Veisz, Optica 5, 237 (2018)CrossRefGoogle Scholar
  15. 15.
    P. Tzallas, B. Bergues, D. Rompotis, N. Tsatrafyllis, S. Chatziathanassiou, A. Muschet, L. Veisz, H. Schröder, D. Charalambidis, J. Opt. 20, 024018 (2018)CrossRefGoogle Scholar
  16. 16.
    P. Tzallas, D. Charalambidis, N.A. Papadogiannis, K. Witte, G.D. Tsakiris, Nature 426, 267 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    J.E. Kruse, P. Tzallas, E. Skantzakis, C. Kalpouzos, G.D. Tsakiris, D. Charalambidis, Phys. Rev. A 82, 021402(R) (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P. Tzallas, E. Skantzakis, D. Charalambidis, J. Phys. B 45, 7 (2012)CrossRefGoogle Scholar
  19. 19.
    E.J. Takahashi, P.F. Lan, O.D. Mucke, Y. Nabekawa, K. Midorikawa, Nat. Comm. 4, 2691 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E. Skantzakis, P. Tzallas, J.E. Kruse, C. Kalpouzos, O. Faucher, G.D. Tsakiris, D. Charalambidis, Phys. Rev. Lett. 105, 043902 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Carpeggiani, P. Tzallas, A. Palacios, D. Gray, F. Martín, D. Charalambidis, Phys. Rev. A 89, 023420 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Campbell, T.J. Bensky, R.R. Jones, Opt. Exp. 1, 197 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    M.B. Campbell, T.J. Bensky, R.R. Jones, Phys. Rev. A 59, 4117(R) (1999)ADSCrossRefGoogle Scholar
  24. 24.
    P. Tzallas, E. Skantzakis, C. Kalpouzos, E.P. Benis, G.D. Tsakiris, D. Charalambidis, Nat. Phys. 3, 846 (2007)CrossRefGoogle Scholar
  25. 25.
    P. Tzallas, E. Skantzakis, D. Charalambidis, J. Phys. B 45, 074007 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    A. Nayak, I. Orfanos, I. Makos, M. Dumergue, S. Kühn, E. Skantzakis, B. Bodi, K. Varju, C. Kalpouzos, H.I.B. Banks, A. Emmanouilidou, D. Charalambidis, P. Tzallas, Phys. Rev. A 98, 023426 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    F. Brizuela, C.M. Heyl, P. Rudawski, D. Kroon, L. Rading, J.M. Dahlström, J. Mauritsson, P. Johnsson, C.L. Arnold, A. L’Huillier, Sci. Rep. 3, 1410 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    K. Midorikawa, Y. Nabekawa, A. Suda, Prog. Quant. Electr. 32, 43 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia, B. Farkas1, B. Major, Z. Várallyay, E. Cormier, M. Kalashnikov, F. Calegari, M. Devetta, F. Frassetto, E. Månsson, L. Poletto, S. Stagira, C. Vozzi, M. Nisoli, P. Rudawski, S. Maclot, F. Campi, H. Wikmark, C. L Arnold, C. M Heyl, P. Johnsson, A. L’Huillier, R. Lopez-Martens, S. Haessler, M. Bocoum, F. Boehle, A. Vernier, G. Iaquaniello, E. Skantzakis, N. Papadakis, C. Kalpouzos, P. Tzallas, F. Lépine, D. Charalambidis, K. Varjú1, K. Osvay, G. Sansone, J. Phys. B 50, 132002 (2017)Google Scholar
  30. 30.
    D. Rompotis, A. Baumann, O. Schepp, T. Maltezopoulos, M. Wieland, M. Drescher, Optica 4, 871 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Baumann, S. Bazzi, D. Rompotis, O. Schepp, A. Azima, M. Wieland, D. Popova-Gorelova, O. Vendrell, R. Santra, M. Drescher, Phys. Rev. A 96, 013428 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    D. Rompotis, T. Gebert, M. Wieland, F. Karimi, M. Drescher, Opt. Lett. 40, 1675 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • I. Orfanos
    • 1
    • 2
  • I. Makos
    • 1
    • 2
  • N. Tsatrafyllis
    • 1
    • 2
  • S. Chatziathanasiou
    • 1
    • 2
  • E. Skantzakis
    • 1
  • D. Charalambidis
    • 1
    • 2
    • 3
  • P. Tzallas
    • 1
    • 3
    Email author
  1. 1.Foundation for Research and Technology—Hellas, Institute of Electronic Structure and LaserHeraklion (Crete)Greece
  2. 2.Department of PhysicsUniversity of CreteHeraklionGreece
  3. 3.ELI-ALPS, ELI-Hu KftSzegedHungary

Personalised recommendations