Advertisement

Functional MRI: DWI and DCE-MRI

  • Govind B. Chavhan
  • Paul D. Humphries
Chapter
Part of the Pediatric Oncology book series (PEDIATRICO)

Abstract

Oncologic imaging is most suited for functional imaging by MRI techniques like diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI. The dense cellularity of the cancer can be assessed by DWI. Similarly, most cancerous tissues have neoangiogenesis and are more vascular than normal tissues, which can be assessed using DCE-MRI. The majority of common body tumors in children demonstrate qualitative diffusion restriction that helps to differentiate between benign and malignant tumors. DWI also serves as an excellent detection sequence as most other tissues lose signal on DW images. Apparent diffusion coefficient (ADC) is a quantitative biomarker derived from DWI that can potentially be used to characterize tumors and monitor and assess therapy response. However, it is currently limited by variability and limited by reproducibility. Newer quantitative DWI assessment models like intravoxel incoherent motion (IVIM), diffusion kurtosis, and stretched-exponential models provide multiple other potential biomarkers for tumor assessment but still are in early investigational phase. Whole-body diffusion is being explored for staging of tumors especially lymphoma but is currently not sufficiently robust and has some limitations. DCE-MRI is a technique that evaluates the microstructural circulation of biological tissues and can be used to evaluate changes in the vascular environment of tumors following therapy with anti-angiogenic agents. While currently limited to a research and drug development setting, DCE-MRI has potential to allow earlier detection of tumor response and may prognosticate outcome in some tumors.

Keywords

Pediatric oncology Body tumors Children MRI Functional imaging DWI DCE-MRI ADC IVIM DKI Stretched-exponential Quantitative biomarker 

References

  1. 1.
    Chavhan GB, Alsabban Z, Babyn PS. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. Radiographics. 2014;34(3):E73–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Chavhan GB, Caro-Dominguez P. Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol. 2016;46(6):847–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.PubMedGoogle Scholar
  5. 5.
    Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Taouli B, Beer AJ, Chenevert T, Collins D, Lehman C, Matos C, et al. Diffusion-weighted imaging outside the brain: consensus statement from an ISMRM-sponsored workshop. J Magn Reson Imaging. 2016;44(3):521–40.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.PubMedCrossRefGoogle Scholar
  9. 9.
    Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol. 2011;196(6):1351–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosenkrantz AB, Padhani AR, Chenevert TL, Koh DM, De Keyzer F, Taouli B, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging. 2015;42(5):1190–202.PubMedCrossRefGoogle Scholar
  11. 11.
    Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med. 2003;50(4):727–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang G, Wang S, Wen D, Zhang J, Wei X, Ma W, et al. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI. Sci Rep. 2016;6:38782.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Winfield JM, Payne GS, Weller A, deSouza NM. DCE-MRI, DW-MRI, and MRS in cancer: challenges and advantages of implementing qualitative and quantitative multi-parametric imaging in the clinic. Top Magn Reson Imaging. 2016;25(5):245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Alibek S, Cavallaro A, Aplas A, Uder M, Staatz G. Diffusion weighted imaging of pediatric and adolescent malignancies with regard to detection and delineation: initial experience. Acad Radiol. 2009;16(7):866–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Soyer P, Boudiaf M, Placé V, Sirol M, Pautrat K, Vignaud A, et al. Preoperative detection of hepatic metastases: comparison of diffusion-weighted, T2-weighted fast spin echo and gadolinium-enhanced MR imaging using surgical and histopathologic findings as standard of reference. Eur J Radiol. 2011;80(2):245–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Parikh T, Drew SJ, Lee VS, Wong S, Hecht EM, Babb JS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology. 2008;246(3):812–22.PubMedCrossRefGoogle Scholar
  17. 17.
    van den Bos IC, Hussain SM, Krestin GP, Wielopolski PA. Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study. Radiology. 2008;248(1):264–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Bozkurt M, Doganay S, Kantarci M, Yalcin A, Eren S, Atamanalp SS, et al. Comparison of peritoneal tumor imaging using conventional MR imaging and diffusion-weighted MR imaging with different b values. Eur J Radiol. 2011;80(2):224–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Satoh Y, Ichikawa T, Motosugi U, Kimura K, Sou H, Sano K, et al. Diagnosis of peritoneal dissemination: comparison of 18F-FDG PET/CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR Am J Roentgenol. 2011;196(2):447–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Humphries PD, Sebire NJ, Siegel MJ, Olsen Ø. Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology. 2007;245(3):848–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Gawande RS, Gonzalez G, Messing S, Khurana A, Daldrup-Link HE. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol. 2013;43(7):836–45.PubMedCrossRefGoogle Scholar
  22. 22.
    Kocaoglu M, Bulakbasi N, Sanal HT, Kismet E, Caliskan B, Akgun V, et al. Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging. 2010;28(5):629–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Uhl M, Altehoefer C, Kontny U, Il’yasov K, Büchert M, Langer M. MRI-diffusion imaging of neuroblastomas: first results and correlation to histology. Eur Radiol. 2002;12(9):2335–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Gahr N, Darge K, Hahn G, Kreher BW, von Buiren M, Uhl M. Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol. 2011;79(3):443–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Serin HI, Gorkem SB, Doganay S, Cıracı S, Unal E, Guzel M, et al. Diffusion weighted imaging in differentiating malignant and benign neuroblastic tumors. Jpn J Radiol. 2016;34(9):620–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Wen Y, Peng Y, Duan XM, Zhang N. Role of diffusion-weighted imaging in distinguishing thoracoabdominal neuroblastic tumours of various histological types and differentiation grades. J Med Imaging Radiat Oncol. 2017;61:718.PubMedCrossRefGoogle Scholar
  27. 27.
    Neubauer H, Li M, Müller VR, Pabst T, Beer M. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors. Rofo. 2017;189(7):640–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Caro-Dominguez PGA, Chavhan GB. Can diffusion weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr Radiol. 2018;48:85.PubMedCrossRefGoogle Scholar
  29. 29.
    Littooij AS, Nikkels PG, Hulsbergen-van de Kaa CA, van de Ven CP, van den Heuvel-Eibrink MM, Olsen Ø. Apparent diffusion coefficient as it relates to histopathology findings in post-chemotherapy nephroblastoma: a feasibility study. Pediatr Radiol. 2017;47:1608.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Littooij AS, Sebire NJ, Olsen Ø. Whole-tumor apparent diffusion coefficient measurements in nephroblastoma: can it identify blastemal predominance? J Magn Reson Imaging. 2017;45(5):1316–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang J, Sun M, Liu D, Hu X, Pui MH, Meng Q, et al. Correlation between apparent diffusion coefficient and histopathology subtypes of osteosarcoma after neoadjuvant chemotherapy. Acta Radiol. 2017;58(8):971–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology. 2009;250(2):459–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Miquel ME, Scott AD, Macdougall ND, Boubertakh R, Bharwani N, Rockall AG. In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol. 2012;85(1019):1507–12.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Littooij AS, Humphries PD, Olsen Ø. Intra- and interobserver variability of whole-tumour apparent diffusion coefficient measurements in nephroblastoma: a pilot study. Pediatr Radiol. 2015;45(11):1651–60.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Miyazaki K, Jerome NP, Collins DJ, Orton MR, d’Arcy JA, Wallace T, et al. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. Eur Radiol. 2015;25(9):2641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Littooij AS, Kwee TC, de Keizer B, Bruin MC, Coma A, Beek FJ, et al. Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: a prospective multicenter study. J Magn Reson Imaging. 2015;42(6):1646–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu L, Wu N, Ouyang H, Dai JR, Wang WH. Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol. 2014;87(1043):20140359.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Blackledge MD, Collins DJ, Tunariu N, Orton MR, Padhani AR, Leach MO, et al. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One. 2014;9(4):e91779.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chen Y, Liu X, Zheng D, Xu L, Hong L, Xu Y, et al. Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magn Reson Imaging. 2014;32(6):630–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang CS, Du LJ, Si MJ, Yin QH, Chen L, Shu M, et al. Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study. PLoS One. 2013;8(8):e72679.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bajpai J, Gamnagatti S, Kumar R, Sreenivas V, Sharma MC, Khan SA, et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol. 2011;41(4):441–50.PubMedCrossRefGoogle Scholar
  42. 42.
    McDonald K, Sebire NJ, Anderson J, Olsen OE. Patterns of shift in ADC distributions in abdominal tumours during chemotherapy-feasibility study. Pediatr Radiol. 2011;41(1):99–106.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu X, Kellokumpu-Lehtinen PL, Pertovaara H, Korkola P, Soimakallio S, Eskola H, et al. Diffusion-weighted MRI in early chemotherapy response evaluation of patients with diffuse large B-cell lymphoma--a pilot study: comparison with 2-deoxy-2-fluoro- D-glucose-positron emission tomography/computed tomography. NMR Biomed. 2011;24(10):1181–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Littooij AS, Kwee TC, Barber I, Granata C, Vermoolen MA, Enríquez G, et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol. 2014;24(5):1153–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016;17(9):1295–305.PubMedCrossRefGoogle Scholar
  46. 46.
    Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, et al. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed. 1994;7(1-2):75–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89(12):5675–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology. 1980;137(3):679–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Schnall MD, Blume J, Bluemke DA, DeAngelis GA, DeBruhl N, Harms S, et al. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology. 2006;238(1):42–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Tofts PS, Kermode AG. Blood brain barrier permeability in multiple sclerosis using labelled DTPA with PET, CT and MRI. J Neurol Neurosurg Psychiatry. 1989;52(8):1019–20.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer. 2005;92(9):1599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Guo J, Glass JO, McCarville MB, Shulkin BL, Daryani VM, Stewart CF, et al. Assessing vascular effects of adding bevacizumab to neoadjuvant chemotherapy in osteosarcoma using DCE-MRI. Br J Cancer. 2015;113(9):1282–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Guo J, Reddick WE, Glass JO, Ji Q, Billups CA, Wu J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer. 2012;118(15):3776–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Jost SC, Ackerman JW, Garbow JR, Manwaring LP, Gutmann DH, McKinstry RC. Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol. 2008;38(12):1293–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Jamin Y, Tucker ER, Poon E, Popov S, Vaughan L, Boult JK, et al. Evaluation of clinically translatable MR imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of neuroblastoma. Radiology. 2013;266(1):130–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Glade Bender JL, Lee A, Reid JM, Baruchel S, Roberts T, Voss SD, Wu B, Ahern CH, Ingle AM, Harris P, Weigel BJ, Blaney SM. Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children’s oncology group phase I consortium report. J Clin Oncol. 2013;31:3034–43.  https://doi.org/10.1200/JCO.2012.47.0914.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Govind B. Chavhan
    • 1
  • Paul D. Humphries
    • 2
  1. 1.Department of Diagnostic Imaging, The Hospital for Sick Children and Medical ImagingUniversity of TorontoTorontoCanada
  2. 2.Department of Radiology, Great Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK

Personalised recommendations