Advertisement

Minimum Square Distance Thresholding Based on Asymmetrical Co-occurrence Matrix

  • Hong Zhang
  • Qiang ZhiEmail author
  • Fan Yang
  • Jiulun Fan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 891)

Abstract

In thresholded image segmentation, correct and adequate extraction of pixel distribution information is the key. In this paper, asymmetrical gray transition co-occurrence matrix is applied to better represent the spatial distribution information of images, and uniformity probability of binarization image is introduced to calculated the deviation information between original and thresholding image. A novel minimum square distance criterion function is proposed to select threshold value, and the vector correlation coefficient is deduced to interpret the reasonable of new criterion. Comparing with relative entropy method, the proposed method is simpler, moreover, it has outstanding object extraction performance.

Keywords

Thresholding method Co-occurrence matrix Minimum square distance 

Notes

Acknowledgments

This work is supported by the National Science Foundation of China (No. 61571361, 61671377), and the Science Plan Foundation of the Education Bureau of Shaanxi Province (No. 15JK1682).

References

  1. 1.
    Sang, Q., Lin, Z.L., Acton, S.T.: Learning automata for image segmentation. Pattern Recognit. Lett. 74, 46–52 (2016).  https://doi.org/10.1016/j.patrec.2015.12.004CrossRefGoogle Scholar
  2. 2.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004).  https://doi.org/10.1117/1.1631315CrossRefGoogle Scholar
  3. 3.
    Chanda, B., Chaudhuri, B.B., Majumder, D.D.: On image enhancement and threshold selection using the gray-level co-occurrence matrix. Pattern Recognit. Lett. 3(2), 243–251 (1985).  https://doi.org/10.1016/0167-8655(85)90004-2CrossRefGoogle Scholar
  4. 4.
    Liang, D., Kaneko, S., Hashimoto, M., et al.: Co-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes. Pattern Recognit. 48, 1370–1386 (2015).  https://doi.org/10.1016/j.patcog.2014.10.020CrossRefGoogle Scholar
  5. 5.
    El-Feghi, I., Adem, N., Sid-Ahmed, M.A., et al.: Improved co-occurrence matrix as a feature space for relative entropy-based image thresholding. In: Proceedings of the Computer Graphics, Imaging and Visualization, vol. 49, pp. 314–320 (2007). http://doi.org/10.1109/CGIV.2007.49
  6. 6.
    Fan, J.L., Ren, J.: Symmetric co-occurrence matrix thresholding method based on square distance. Acta Electronica Sinica 39(10), 2277–2281 (2011). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXU201110012.htm. (in Chinese)
  7. 7.
    Fan, J.L., Zhang, H.: A unique relative entropy-based symmetrical co-occurrence matrix thresholding with statistical spatial information. Chin. J. Electron. 24(3), 622–626 (2015).  https://doi.org/10.1049/cje.2015.07.031MathSciNetCrossRefGoogle Scholar
  8. 8.
    Subudhi, P., Mukhopadhyay, S.: A novel texture segmentation method based on co-occurrence energy-driven parametric active contour model. Signal, Image Video Process. 12(4), 669–676 (2018).  https://doi.org/10.1007/s11760-017-1206-4CrossRefGoogle Scholar
  9. 9.
    Pal, S.K., Pal, N.R.: Segmentation using contrast and homogeneity measure. Patt. Recog. Lett. 5, 293–304 (1987).  https://doi.org/10.1016/0167-8655(87)90061-4CrossRefGoogle Scholar
  10. 10.
    Ramac, L.C., Varshney, P.K.: Image thresholding based on ali-silvey distance measures. Pattern Recognit. 30(7), 1161–1174 (1997).  https://doi.org/10.1016/S0031-3203(96)00149-5CrossRefGoogle Scholar
  11. 11.
    Chang, C.I., Chen, K., Wang, J., Althouse, M.L.G.: A relative entropy-based approach to image thresholding. Pattern Recognit. 27(9), 1275–1289 (1994).  https://doi.org/10.1016/0031-3203(94)90011-6CrossRefGoogle Scholar
  12. 12.
    Lee, S.H., Hong, S.J., Tsai, H.R.: Entropy thresholding and its parallel algorithm on the reconfigurable array of processors with wider bus networks. IEEE Trans. Image Proc. 8(9), 1242–1299 (1999).  https://doi.org/10.1109/83.784435CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hong Zhang
    • 1
    • 2
  • Qiang Zhi
    • 1
    • 2
    Email author
  • Fan Yang
    • 1
    • 2
  • Jiulun Fan
    • 3
  1. 1.Xi’an UniversityXi’anChina
  2. 2.School of AutomationXi’an University of Posts and TelecommunicationsXi’anChina
  3. 3.Xi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations