Advertisement

The Impact Factor Analysis on the Improved Cook-Torrance Bidirectional Reflectance Distribution Function of Rough Surfaces

  • Lin-li SunEmail author
  • Yanxia Liang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 891)

Abstract

The Cook-Torrance BRDF of the material is not energy balanced for the reflected radiance and the albedo converges to zero at grazing angles. This gap is filled by appropriate modifications of the Cook-Torrance BRDF model. The improved BRDF model is relevant with the surface roughness, the distribution of visible normal, the Fresnel factor and the geometrical attenuation factor. The model is applied to metallic surfaces with various values of root mean square and the geometrical attenuation factors as the incidence angle is increased. The improved model is analytic and suitable for Computer Graphics applications.

Keywords

BRDF model Geometrical attenuation factor Microsurface theory 

Notes

Acknowledgement

This work was supported by the Department of Education Shaanxi Province, China, under Grant 2013JK1023, and Shaanxi STA International Cooperation and Exchanges Project (2017KW-011).

References

  1. 1.
    Cook, R., Torrance, K.: A reflectance model for computer graphics. Comput. Graph. 15(3), 307–316 (1981).  https://doi.org/10.1145/357290.357293CrossRefGoogle Scholar
  2. 2.
    Neumann, L., Neumann, A.: Compact metallic reflectance models. Comput. Graph. Forum. 18, 161–172 (1999).  https://doi.org/10.1111/1467-8659.00337CrossRefGoogle Scholar
  3. 3.
    Schlick: A customizable reflectance model for everyday rendering. In: Proceedings of Fourth Eurographics Workshop on Rendering, pp. 73—83 (1993)Google Scholar
  4. 4.
    Blinn, J.: Models of light reflection for computer synthesized pictures. Comput. Graph. SIGGRAPH, 192–198 (1977).  https://doi.org/10.1145/563858.563893
  5. 5.
    Smith, B.: Geometrical shadowing of a random rough surface. IEEE Trans. Antennas Propag. 15(5), 668–671 (1967).  https://doi.org/10.1109/TAP.1967.1138991CrossRefGoogle Scholar
  6. 6.
    Heitz, E., D’Eon, E., D’Eon, E., et al.: Multiple-scattering microfacet BSDFs with the Smith model. ACM Trans. Graph. 35(4), 58, 1–14 (2016).  https://doi.org/10.1145/2897824.2925943Google Scholar
  7. 7.
    Walter, B., Marschner, S.R., Li, H., et al.: Microfacet models for refraction through rough surfaces. In: Eurographics Symposium on Rendering Techniques, Grenoble, France. pp. 195–206 (2007).  https://doi.org/10.2312/egwr/egsr07/195-206
  8. 8.
    Kurt, M.: An anisotropic BRDF model for fitting and Monte Carlo rendering. ACM Trans. Graph. (2010).  https://doi.org/10.1145/1722991.1722996CrossRefGoogle Scholar
  9. 9.
    Heitz, E., Dupuy, J., Hill, S., Neubelt, D.: Real-time polygonal-light shading with linearly transformed cosines. ACM Trans. Graph. 35(4), 41, 1–8 (2016).  https://doi.org/10.1145/2897824.2925895Google Scholar
  10. 10.
    Nicodemus, F.E., Richmond, J.C., Hsia, J.J., et al.: Geometrical considerations and nomenclature for reflectance. 160, 94–145 (1977).  https://doi.org/10.6028/nbs.mono.160

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of AutomationXi’an University of Posts and TelecommunicationsXi’anChina
  2. 2.Shaanxi Key Laboratory of Information Communication Network and SecurityXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations