SWRL Reasoning Using Decision Tables

  • Maxime ClementEmail author
  • Ryutaro Ichise
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11313)


Ontologies are widely used for representing and sharing knowledge specific to some domain. The Web Ontology Language (OWL) is a popular language for designing ontologies and has been extended with the Semantic Web Rule Language (SWRL) to enable the use of rules in OWL ontologies. However, reasoning with SWRL rules is a computationally complex task, making its use difficult in time-sensitive applications. Such applications usually rely on decision tables, a popular yet simple structure used for fast decision making. Decision tables however are limited to propositional rules, making it impossible to represent SWRL rules using universally quantified variables. In this paper, a technique is proposed to enable reasoning with decision tables for SWRL rules and OWL ontologies by exploiting the classes of the variables and entities. Experimental results show that for many settings, our technique offers faster reasoning speed when compared to a state of the art SWRL reasoner.


Ontology reasoning Propositionalization Decision table SWRL 



This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO).


  1. 1.
    Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 1–18. Springer, Heidelberg (2000). Scholar
  2. 2.
    Bassiliades, N.: SWRL2SPIN: a tool for transforming SWRL rule bases in OWL ontologies to object-oriented SPIN rules. arXiv preprint arXiv:1801.09061 (2018)
  3. 3.
    Bechhofer, S., Horrocks, I.: Hoolet: an OWL reasoner with support for rules (2004).
  4. 4.
    Browne, P.: JBoss Drools Business Rules. Packt Publishing Ltd, Birmingham (2009)Google Scholar
  5. 5.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)CrossRefGoogle Scholar
  6. 6.
    Colomb, R.M., Chung, C.: Very fast decision table execution of propositional expert systems. In: Proceedings of the 8th National Conference on Artificial Intelligence, pp. 671–676 (1990)Google Scholar
  7. 7.
    Gene Ontology Consortium: Gene ontology consortium: going forward. Nucleic Acids Res. 43(D1), D1049–D1056 (2014)Google Scholar
  8. 8.
    Faruqui, R.U., MacCaull, W.: O\(_{wl}\)O\(_{nt}\)DB: a scalable reasoning system for OWL 2 RL ontologies with large ABoxes. In: Weber, J., Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 105–123. Springer, Heidelberg (2013). Scholar
  9. 9.
    Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant. Sci. Serv. Agents World Wide Web 6(4), 309–322 (2008)CrossRefGoogle Scholar
  10. 10.
    Hill, E.F.: Jess in Action: Java Rule-Based Systems. Manning Publications Co., Greenwich (2003)Google Scholar
  11. 11.
    Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. Web 2(1), 11–21 (2011)Google Scholar
  12. 12.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21, 79 (2004)Google Scholar
  13. 13.
    Kang, Y.B., Pan, J.Z., Krishnaswamy, S., Sawangphol, W., Li, Y.F.: How long will it take? Accurate prediction of ontology reasoning performance. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 80–86 (2014)Google Scholar
  14. 14.
    Knublauch, H., Hendler, J.A., Idehen, K.: SPIN-overview and motivation. W3C Member Submission 22 (2011)Google Scholar
  15. 15.
    Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003). Scholar
  16. 16.
    Metzner, J.R., Barnes, B.H.: Decision Table Languages and Systems. Academic Press, Orlando (1977)Google Scholar
  17. 17.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 54–88 (2004)CrossRefGoogle Scholar
  18. 18.
    Motik, B., et al.: OWL 2 web ontology language: structural specification and functional-style syntax. W3C Recommendation 27(65), 159 (2009)Google Scholar
  19. 19.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web Semant. Sci. Serv. Agents World Wide Web 3(1), 41–60 (2005)CrossRefGoogle Scholar
  20. 20.
    Musen, M.A.: The protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)CrossRefGoogle Scholar
  21. 21.
    O’Connor, M.J., Shankar, R.D., Musen, M.A., Das, A.K., Nyulas, C.: The SWRLAPI: a development environment for working with SWRL rules. In: OWLED (2008)Google Scholar
  22. 22.
    Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)CrossRefGoogle Scholar
  23. 23.
    O’Connor, M., Tu, S., Nyulas, C., Das, A., Musen, M.: Querying the semantic web with SWRL. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 155–159. Springer, Heidelberg (2007). Scholar
  24. 24.
    Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating features from linked open data. Linked Data Knowl. Discov. 6 (2014)Google Scholar
  25. 25.
    Shearer, R., Motik, B., Horrocks, I.: Hermit: a highly-efficient OWL reasoner. In: OWLED, vol. 432, p. 91 (2008)Google Scholar
  26. 26.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar
  27. 27.
    Staab, S., Studer, R.: Handbook on Ontologies. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  28. 28.
    Struharik, J.: Implementing decision trees in hardware. In: 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics (SISY), pp. 41–46. IEEE (2011)Google Scholar
  29. 29.
    Ting, S., Wang, W.M., Kwok, S.K., Tsang, A.H., Lee, W.: Racer: rule-associated case-based reasoning for supporting general practitioners in prescription making. Expert Syst. Appl. 37(12), 8079–8089 (2010)CrossRefGoogle Scholar
  30. 30.
    Zhao, L., Ichise, R., Liu, Z., Mita, S., Sasaki, Y.: Ontology-based driving decision making: a feasibility study at uncontrolled intersections. IEICE Trans. Inf. Syst. E100.D(7), 1425–1439 (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations