Advertisement

A Random Walk Model for Entity Relatedness

  • Pablo Torres-TramónEmail author
  • Conor Hayes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11313)

Abstract

Semantic relatedness is a critical measure for a wide variety of applications nowadays. Numerous models, including path-based, have been proposed for this task with great success in many applications during the last few years. Among these applications, many of them require computing semantic relatedness between hundreds of pairs of items as part of their regular input. This scenario demands a computationally efficient model to process hundreds of queries in short time spans. Unfortunately, Path-based models are computationally challenging, creating large bottlenecks when facing these circumstances. Current approaches for reducing this computation have focused on limiting the number of paths to consider between entities.

Contrariwise, we claim that a semantic relatedness model based on random walks is a better alternative for handling the computational cost. To this end, we developed a model based on the well-studied Katz score. Our model addresses the scalability issues of Path-based models by pre-computing relatedness for all pair of vertices in the knowledge graph beforehand and later providing them when needed in querying time. Our current findings demonstrate that our model has a competitive performance in comparison to Path-based models while being computationally efficient for high-demanding applications.

Keywords

Entity relatedness Path-based semantics Random walks 

Notes

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant No. SFI/12/RC/2289, co-funded by the European Regional Development Fund

References

  1. 1.
    Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and tensor factorizations. In: IEEE International Conference on Data Mining Workshops, ICDMW 2009, pp. 262–269. IEEE (2009)Google Scholar
  2. 2.
    Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similarity and relatedness using distributional and wordnet-based approaches. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 19–27. Association for Computational Linguistics (2009)Google Scholar
  3. 3.
    Agirre, E., Soroa, A.: Personalizing PageRank for word sense disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, pp. 33–41. Association for Computational Linguistics (2009)Google Scholar
  4. 4.
    Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.P.: Context-aware semantic association ranking (2003)Google Scholar
  5. 5.
    Anyanwu, K., Sheth, A.: \(\rho \)-queries: enabling querying for semantic associations on the semantic web. In: Proceedings of the 12th international conference on World Wide Web, pp. 690–699. ACM (2003)Google Scholar
  6. 6.
    Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)CrossRefGoogle Scholar
  7. 7.
    Cheng, G., Shao, F., Qu, Y.: An empirical evaluation of techniques for ranking semantic associations. IEEE Trans. Knowl. Data Eng. 29(11), 2388–2401 (2017)CrossRefGoogle Scholar
  8. 8.
    Cheng, G., Zhang, Y., Qu, Y.: Explass: exploring associations between entities via top-K ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 422–437. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11915-1_27CrossRefGoogle Scholar
  9. 9.
    Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: REX: explaining relationships between entity pairs. Proc. VLDB Endow. 5(3), 241–252 (2011)CrossRefGoogle Scholar
  10. 10.
    Filtz, E., Savenkov, V., Umbrich, J.: On finding the K shortest paths in RDF data. In: Proceedings of the 5th International Workshop on Intelligent Exploration of Semantic Data (IESD 2016) Co-located with the 15th International Semantic Web Conference (ISWC 2016), vol. 18 (2016)Google Scholar
  11. 11.
    Finkelstein, L., et al.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference on World Wide Web, pp. 406–414. ACM (2001)Google Scholar
  12. 12.
    Fionda, V., Pirrò, G.: Meta structures in knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 296–312. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_18CrossRefGoogle Scholar
  13. 13.
    Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 375–383. ACM (2017)Google Scholar
  14. 14.
    Gentile, A.L., Zhang, Z., Xia, L., Iria, J.: Semantic relatedness approach for named entity disambiguation. In: Agosti, M., Esposito, F., Thanos, C. (eds.) IRCDL 2010. CCIS, vol. 91, pp. 137–148. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15850-6_14CrossRefGoogle Scholar
  15. 15.
    Heim, P., Lohmann, S., Stegemann, T.: Interactive relationship discovery via the semantic web. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13486-9_21CrossRefGoogle Scholar
  16. 16.
    Hulpuş, I., Prangnawarat, N., Hayes, C.: Path-based semantic relatedness on linked data and its use to word and entity disambiguation. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 442–457. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_26CrossRefGoogle Scholar
  17. 17.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an on-line lexical database. Int. J. Lexicogr. 3(4), 235–244 (1990)CrossRefGoogle Scholar
  19. 19.
    Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pereira Nunes, B., Dietze, S., Casanova, M.A., Kawase, R., Fetahu, B., Nejdl, W.: Combining a co-occurrence-based and a semantic measure for entity linking. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 548–562. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38288-8_37CrossRefGoogle Scholar
  21. 21.
    Piao, G., Breslin, J.G.: Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 315–320. ACM (2016)Google Scholar
  22. 22.
    Pirrò, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_36CrossRefGoogle Scholar
  23. 23.
    Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  24. 24.
    Schwartz, H.A., Gomez, F.: Evaluating semantic metrics on tasks of concept similarity. In: Cross-Disciplinary Advances in Applied Natural Language Processing: Issues and Approaches, pp. 324–340. IGI Global (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Insight Centre for Data AnalyticsNUI GalwayGalwayIreland

Personalised recommendations