Advertisement

A Query Model for Ontology-Based Event Processing over RDF Streams

  • Riccardo TommasiniEmail author
  • Pieter Bonte
  • Emanuele Della Valle
  • Femke Ongenae
  • Filip De Turck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11313)

Abstract

Stream Reasoning (SR) envisioned, investigated and proved the possibility to make sense of streaming data in real-time. Now, the community is investigating more powerful solutions, realizing the vision of expressive stream reasoning. Ontology-Based Event Processing (OBEP) is our contribution to this field. OBEP combines Description Logics and Event Recognition Languages. It allows describing events either as logical statements or as complex event patterns, and it captures their occurrences over ontology streams. In this paper, we define OBEP’s query model, we present a language to define OBEP queries, and we explain the language semantics.

Keywords

Stream processing Semantic web Stream reasoning Complex event processing 

References

  1. 1.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning, pp. 635–644 (2011)Google Scholar
  2. 2.
    Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event processing in ETALIS. Semant. Web 3(4), 397–407 (2012)Google Scholar
  3. 3.
    Baader, F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Chakravarthy, S., Mishra, D.: Snoop: an expressive event specification language for active databases. Data Knowl. Eng. 14(1), 1–26 (1994)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Lécué, F., Pan, J.Z., Chen, H.: Learning from ontology streams with semantic concept drift. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 957–963 (2017).  https://doi.org/10.24963/ijcai.2017/133
  6. 6.
    Cugola, G.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15 (2012)CrossRefGoogle Scholar
  7. 7.
    Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems, DEBS, Cambridge, United Kingdom (2010)Google Scholar
  8. 8.
    Dell’Aglio, D., Dao-Tran, M., Calbimonte, J., Phuoc, D.L., Della Valle, E.: A query model to capture event pattern matching in RDF stream processing query languages. In: Knowledge Engineering and Knowledge Management - 20th International Conference, EKAW, Bologna, Italy (2016)Google Scholar
  9. 9.
    Dell’Aglio, D., Della Valle, E., Calbimonte, J., Corcho, Ó.: RSP-QL semantics: a unifying query model to explain heterogeneity of RDF stream processing systems. Int. J. Semantic Web Inf. Syst. 10(4), 17–44 (2014)CrossRefGoogle Scholar
  10. 10.
    Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook 1(1–2), 59–83 (2017)Google Scholar
  11. 11.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR, vol. 6, pp. 57–67 (2006)Google Scholar
  12. 12.
    Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)Google Scholar
  13. 13.
    Paschke, A.: ECA-RuleML: an approach combining ECA rules with temporal interval-based KR event/action logics and transactional update logics. CoRR abs/cs/0610167 (2006)Google Scholar
  14. 14.
    Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009)CrossRefGoogle Scholar
  15. 15.
    Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35173-0_20CrossRefGoogle Scholar
  16. 16.
    Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance system. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, 24–28 October 2011, pp. 831–836 (2011).  https://doi.org/10.1145/2063576.2063696
  17. 17.
    Stuckenschmidt, H., et al.: Towards expressive stream reasoning. In: Semantic Challenges in Sensor Networks, 24–29 January 2010Google Scholar
  18. 18.
    Tommasini, R., Bonte, P., Della Valle, E., Mannens, E., De Turck, F., Ongenae, F.: Towards ontology based event processing. In: OWLED2016, the International Experiences and Directions Workshop on OWL (2016)Google Scholar
  19. 19.
    Zemke, F., Witkowski, A., Cherniack, M., Colby, L.: Pattern matching in sequences of rows. Technical report, Technical Report ANSI Standard Proposal (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Riccardo Tommasini
    • 1
    • 2
    Email author
  • Pieter Bonte
    • 1
    • 2
  • Emanuele Della Valle
    • 1
    • 2
  • Femke Ongenae
    • 1
    • 2
  • Filip De Turck
    • 1
    • 2
  1. 1.DEIBPolitecnico di MilanoMilanItaly
  2. 2.Ghent University - imecGhentBelgium

Personalised recommendations