Advertisement

Comparative Preferences in SPARQL

  • Peter F. Patel-SchneiderEmail author
  • Axel Polleres
  • David Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11313)

Abstract

Sometimes one does not want all the solutions to a query but instead only those that are most desirable according to user-specified preferences. If a user-specified preference relation is acyclic then its specification and meaning are straightforward. In many settings, however, it is valuable to support preference relations that are not acyclic and that might not even be transitive, in which case though their handling involves some open questions. We discuss a definition of desired solutions for arbitrary preference relations and show its desirable properties. We modify a previous extension to SPARQL for simple preferences to correctly handle any preference relation and provide translations of this extension back into SPARQL that can compute the desired solutions for all preference relations that are acyclic or transitive. We also propose an additional extension that returns solutions at multiple levels of desirability, which adds additional expressiveness over prior work. However, for the latter we conjecture that an effective translation to a single (non-recursive) SPARQL query is not possible.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  2. 2.
    Klyne, G., et al.: Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C Recommendation, January 2004Google Scholar
  3. 3.
    Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Heidelberg (2006).  https://doi.org/10.1007/11926078_44CrossRefGoogle Scholar
  4. 4.
    Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quantitative preferences. In: 2nd International Workshop on Ordering and Reasoning (OrdRing 2013), at ISWC 2013. CEUR Workshop Proceedings, vol. 1059 (2013)Google Scholar
  5. 5.
    Troumpoukis, A., Konstantopoulos, S., Charalambidis, A.: An extension of SPARQL for expressing qualitative preferences. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 711–727. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_42Google Scholar
  6. 6.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation, March 2013. http://www.w3.org/TR/sparql11-query/
  7. 7.
    Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th International Conference on Data Engineering, pp. 421–430 (2001)Google Scholar
  8. 8.
    Tversky, A.: Intransitivity of preferences. Psychol. Rev. 76(1), 31–48 (1969)CrossRefGoogle Scholar
  9. 9.
    Nurmi, H.: Making sense of intransitivity, incompleteness and discontinuity of preferences. In: Zaraté, P., Kersten, G.E., Hernández, J.E. (eds.) GDN 2014. LNBIP, vol. 180, pp. 184–192. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07179-4_21CrossRefGoogle Scholar
  10. 10.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in SPARQL 1.1: Syntax, semantics and evaluation. J. Web Semant. 18(1), 1–17 (2013)Google Scholar
  12. 12.
    Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quantitative preferences (extended report). University of Toronto CSRG Report 619 (2013)Google Scholar
  13. 13.
    Rosati, J., Di Noia, T., Lukasiewicz, T., De Leone, R., Maurino, A.: Preference queries with ceteris paribus semantics for linked data. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems: OTM 2015 Conferences. OTM 2015. Lecture Notes in Computer Science, vol. 9415. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26148-5_28Google Scholar
  14. 14.
    Kießling, W., Köstler, G.: Preference SQL - design, implementation, experiences. In: 28th International Conference on Very Large Data Bases, pp. 990–1001 (2002)CrossRefGoogle Scholar
  15. 15.
    Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview. IEEE Data Eng. Bull. 34(2), 11–18 (2011)Google Scholar
  16. 16.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008). https://www.w3.org/TR/rdf-sparql-query/
  17. 17.
    Patel-Schneider, P.F., Martin, D.: EXISTStential aspects of SPARQL. In: The 15th International Semantic Web Conference (ISWC 2016), October 2016Google Scholar
  18. 18.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peter F. Patel-Schneider
    • 1
    Email author
  • Axel Polleres
    • 2
    • 3
  • David Martin
    • 1
  1. 1.NAIL Laboratory, Nuance CommunicationsSunnyvaleUSA
  2. 2.Vienna University of Economics and Business/Complexity Science Hub ViennaWienAustria
  3. 3.Stanford UniversityStanfordUSA

Personalised recommendations