Advertisement

Basic Properties for Total Uncertainty Measures in the Theory of Evidence

  • Joaquín AbellánEmail author
  • Carlos J. Mantas
  • Éloi Bossé
Chapter
Part of the Information Fusion and Data Science book series (IFDS)

Abstract

The theory of evidence is a generalization of the probability theory which has been used in many applications. That generalization permits to represent more different types of uncertainty. To quantify the total information uncertainty in theory of evidence, several measures have been proposed in the last decades. From the axiomatic point of view, any uncertainty measure must verify a set of important properties to guarantee a correct behavior. Thus, a total measure in theory of evidence must preserve the total amount of information or not to decrease when uncertainty is increased. In this chapter we review and revise the properties of a total measure of uncertainty considered in the literature.

Keywords

Theory of evidence Dempster-Shafer theory Uncertainty-based information Measures of uncertainty Conflict Non-specificity 

References

  1. 1.
    J. Abellán, Analyzing properties of Deng entropy in the theory of evidence. Chaos Solitons Fractals 95, 195–199 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Abellán, E. Bossé, Drawbacks of uncertainty measures based on the pignistic transformation. IEEE Trans. Syst. Man Cybern.: Syst. 48, 382–388 (2018)Google Scholar
  3. 3.
    J. Abellán, A. Masegosa, Requierements for total uncertainty measures in Dempster-Shafer theory of evidence. Int. J. Gen. Syst. 37(6), 733–747 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Abellán, S. Moral, Upper entropy of credal sets. Applications to credal classification. Int. J. Approximate Reason. 39, 235–255 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Abellán, G.J. Klir, S. Moral, Disaggregated total uncertainty measure for credal sets. Int. J. Gen. Syst. 35(1), 29–44 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Choquet, Théorie des Capacités. Ann. Inst. Fourier 5, 131–292 (1953/1954)CrossRefGoogle Scholar
  7. 7.
    L.M. de Campos, J.F. Huete, S. Moral, Probability intervals: a tool for uncertainty reasoning. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2, 167–196 (1994)CrossRefGoogle Scholar
  8. 8.
    A.P. Dempster, Upper and lower probabilities induced by a multivaluated mapping. Ann. Math. Stat. 38, 325–339 (1967)CrossRefGoogle Scholar
  9. 9.
    Y. Deng, Deng entropy. Chaos Solitions Fractals 91, 549–553 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Dubois, H. Prade, A note on measure of specificity for fuzzy sets. BUSEFAL 19, 83–89 (1984)zbMATHGoogle Scholar
  11. 11.
    T.L. Fine, Foundations of probability, in Basics Problems in Methodology and Linguistics, ed. by R.E. Butts, J. Hintikka (Reidel, Dordrecht, 1983), pp. 105–119Google Scholar
  12. 12.
    I.J. Good, Subjetive probability as the measure of a non-measurable set, in Login, Metholodology and Philosophy of Science, ed. by E. Nagel, P. Suppes, A. Tarski (Stanford University Press, California, 1962), pp. 319–329Google Scholar
  13. 13.
    D. Harmanec, G.J. Klir, Measuring total uncertainty in Dempster-Shafer theory: a novel approach. Int. J. Gen. Syst. 22, 405–419 (1994)CrossRefGoogle Scholar
  14. 14.
    D. Harmanec, G.J. Klir, Principle of uncertainty revisited, in Proceedings of 4th Intern, Fuzzy Systems and Intelligent Control Conference, Maui (1996), pp. 331–339Google Scholar
  15. 15.
    R.V.L. Hartley, Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)CrossRefGoogle Scholar
  16. 16.
    M. Higashi, G.J. Klir, Measures of uncertainty and information based on possibility distributions. Int. J. Gen. Syst. 9, 43–58 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A.L. Jousselme, C. Liu, D. Grenier, E. Bossé, Measuring ambiguity in the evidence theory. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 36(5), 890–903 (2006)CrossRefGoogle Scholar
  18. 18.
    G.J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory (Wiley, Hoboken, 2006)zbMATHGoogle Scholar
  19. 19.
    G.J. Klir, H.W. Lewis, Remarks on “Measuring ambiguity in the evidence theory”. IEEE Trans. Syst. Man Cybern.–Part A: Syst. Hum. 38(4), 995–999 (2008)Google Scholar
  20. 20.
    G.J. Klir, M.J. Wierman, Uncertainty-Based Information (Phisica-Verlag, Heidelberg/New York, 1998)Google Scholar
  21. 21.
    Y. Maeda, H. Ichihashi, A uncertainty measure with monotonicity under the random set inclusion. Int. J. Gen. Syst. 21, 379–392 (1993).CrossRefGoogle Scholar
  22. 22.
    I. Levi, The Enterprise of Knowledge (NIT Press, London, 1980)Google Scholar
  23. 23.
    G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)zbMATHGoogle Scholar
  24. 24.
    A. Shahpari, S.A. Seyedin, Using mutual aggregate uncertainty measures in a threat assessment problem constructed by Dempster-Shafer network. IEEE Trans. Syst. Man Cybern. Part A 45(6), 877–886 (2015)CrossRefGoogle Scholar
  25. 25.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Suppes, The measurement of belief (with discussion). J. R. Stat. Soc. B 36, 160–191 (1974)zbMATHGoogle Scholar
  27. 27.
    P. Walley, Statistical Reasoning with Imprecise Probabilities (Chapman and Hall, New York, 1991)CrossRefGoogle Scholar
  28. 28.
    R.R. Yager, Entropy and specificity in a mathematical theory of evidence. Int. J. Gen. Syst. 9, 249–260 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joaquín Abellán
    • 1
    Email author
  • Carlos J. Mantas
    • 1
  • Éloi Bossé
    • 2
    • 3
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.IMT-AtlantiqueBrestFrance
  3. 3.McMaster UniversityHamiltonCanada

Personalised recommendations