Quality of Information Sources in Information Fusion

  • Frédéric PichonEmail author
  • Didier Dubois
  • Thierry Denœux
Part of the Information Fusion and Data Science book series (IFDS)


Pieces of information can only be evaluated if knowledge about the quality of the sources of information is available. Typically, this knowledge pertains to the source relevance. In this chapter, other facets of source quality are considered, leading to a general approach to information correction and fusion for belief functions. In particular, the case where sources may partially lack truthfulness is deeply investigated. As a result, Shafer’s discounting operation and the unnormalised Dempster’s rule, which deal only with source relevance, are considerably extended. Most notably, the unnormalised Dempster’s rule is generalised to all Boolean connectives. The proposed approach also subsumes other important correction and fusion schemes, such as contextual discounting and Smets’ α-junctions. We also study the case where pieces of knowledge about the quality of the sources are independent. Finally, some means to obtain knowledge about source quality are reviewed.


Dempster-Shafer theory Belief functions Evidence theory Boolean logic Information fusion Discounting 


  1. 1.
    A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  2. 2.
    T. Denœux, A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–213 (1995)CrossRefGoogle Scholar
  3. 3.
    S. Destercke, D. Dubois, Idempotent conjunctive combination of belief functions: extending the minimum rule of possibility theory. Inf. Sci. 181(18), 3925–3945 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Destercke, P. Buche, B. Charnomordic, Evaluating data reliability: an evidential answer with application to a web-enabled data warehouse. IEEE Trans. Knowl. Data Eng. 25(1), 92–105 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Diderot, J. le Rond d’Alembert (eds.), Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers. University of Chicago: ARTFL Encyclopédie Project (Spring 2016 Edition), ed. by R. Morrissey, G. Roe.
  6. 6.
    D. Dubois, H. Prade, A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. Int. J. Gen. Syst. 12(3), 193–226 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Z. Elouedi, K. Mellouli, P. Smets, Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. B 34(1), 782–787 (2004)CrossRefGoogle Scholar
  8. 8.
    Z. Elouedi, E. Lefèvre, D. Mercier, Discountings of a belief function using a confusion matrix, in 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol 1, Oct 2010, pp. 287–294Google Scholar
  9. 9.
    R. Haenni, Uncover Dempster’s rule where it is hidden, in Proceedings of the 9th International Conference on Information Fusion (FUSION 2006), Florence (2006)Google Scholar
  10. 10.
    R. Haenni, S. Hartmann, Modeling partially reliable information sources: a general approach based on Dempster-Shafer theory. Inf. Fusion 7(4), 361–379 (2006)CrossRefGoogle Scholar
  11. 11.
    R.D. Huddleston, G.K. Pullum, A Student’s Introduction to English Grammar (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  12. 12.
    F. Janez, A. Appriou, Théorie de l’évidence et cadres de discernement non exhaustifs. Traitement du Signal 13(3), 237–250 (1996)zbMATHGoogle Scholar
  13. 13.
    F. Janez, A. Appriou, Theory of evidence and non-exhaustive frames of discernment: plausibilities correction methods. Int. J. Approximate Reason. 18, 1–19 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Klein, O. Colot, Automatic discounting rate computation using a dissent criterion, in Proceedings of the 1st Workshop on the Theory of Belief Functions (BELIEF), Brest (2010), pp. 1–6Google Scholar
  15. 15.
    J. Kohlas, P.P. Shenoy, Computation in valuation algebras, in Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms for Uncertainty and Defeasible Reasoning, ed. by D.M. Gabbay, Ph. Smets, vol. 5 (Kluwer, Dordrecht, 2000), pp. 5–39Google Scholar
  16. 16.
    E. Lefèvre, F. Pichon, D. Mercier, Z. Elouedi, B. Quost, Estimation de sincérité et pertinence à partir de matrices de confusion pour la correction de fonctions de croyance, in Rencontres Francophones sur la Logique Floue et ses Applications (LFA), Cépaduès, Nov 2014, vol. 1, pp. 287–294Google Scholar
  17. 17.
    D. Mercier, T. Denœux, M.-H. Masson, Belief function correction mechanisms, in Foundations of Reasoning Under Uncertainty, ed. by B. Bouchon-Meunier, R.R. Yager, J.-L. Verdegay, M. Ojeda-Aciego, L. Magdalena. Volume 249 of Studies in Fuzziness and Soft Computing (Springer, Berlin, 2010), pp. 203–222Google Scholar
  18. 18.
    D. Mercier, E. Lefèvre, F. Delmotte, Belief functions contextual discounting and canonical decompositions. Int. J. Approximate Reason. 53(2), 146–158 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Pichon, On the α–conjunctions for combining belief functions, in Belief Functions: Theory and Applications, ed. by T. Denœux, M.-H. Masson. Volume 164 of Advances in Intelligent and Soft Computing (Springer, Berlin/Heidelberg, 2012), pp. 285–292Google Scholar
  20. 20.
    F. Pichon, D. Dubois, T. Denœux, Relevance and truthfulness in information correction and fusion. Int. J. Approximate Reason. 53(2), 159–175 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    F. Pichon, C. Labreuche, B. Duqueroie, T. Delavallade, Multidimensional approach to reliability evaluation of information sources, in Information Evaluation, ed. by P. Capet, T. Delavallade (Wiley, Hoboken, 2014), pp. 129–156CrossRefGoogle Scholar
  22. 22.
    F. Pichon, S. Destercke, T. Burger, A consistency-specificity trade-off to select source behavior in information fusion. IEEE Trans. Cybern. 45(4), 598–609 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Pichon, D. Mercier, E. Lefèvre, F. Delmotte, Proposition and learning of some belief function contextual correction mechanisms. Int. J. Approximate Reason. 72, 4–42 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Schubert, Conflict management in Dempster-Shafer theory using the degree of falsity. Int. J. Approximate Reason. 52(3), 449–460 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)zbMATHGoogle Scholar
  26. 26.
    P. Smets, Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approximate Reason. 9(1), 1–35 (1993)MathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Smets, The α-junctions: combination operators applicable to belief functions, in First International Joint Conference on Qualitative and Quantitative Practical Reasoning (ECSQARU-FAPR’97), Bad Honnef, 09 June 1997–12 June 1997, ed. by D.M. Gabbay, R. Kruse, A. Nonnengart, H.J. Ohlbach. Volume 1244 of Lecture Notes in Computer Science (Springer, 1997), pp. 131–153Google Scholar
  28. 28.
    P. Smets, The transferable belief model for quantified belief representation, in Handbook of Defeasible Reasoning and Uncertainty Management Systems, ed. by D.M. Gabbay, P. Smets, vol. 1 (Kluwer, Dordrecht, 1998), pp. 267–301Google Scholar
  29. 29.
    P. Smets, Managing deceitful reports with the transferable belief model, in 8th International Conference on Information Fusion, Philadelphia, July 2005. Google Scholar
  30. 30.
    P. Smets, R. Kennes, The transferable belief model. Artif. Intell. 66, 191–243 (1994)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Yang, D. Han, C. Han, Discounted combination of unreliable evidence using degree of disagreement. Int. J. Approximate Reason. 54(8), 1197–1216 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frédéric Pichon
    • 1
    Email author
  • Didier Dubois
    • 2
  • Thierry Denœux
    • 3
  1. 1.EA 3926, Laboratoire de Génie Informatique et d’Automatique de l’Artois (LGI2A)Université d’ArtoisBéthuneFrance
  2. 2.CNRS, IRIT (UMR 5505)Université Paul SabatierToulouse Cedex 09France
  3. 3.CNRS, Heudiasyc (UMR 7253)Sorbonne Universités, Université de Technologie de CompiègneCompiègne CedexFrance

Personalised recommendations