Advertisement

Solar Energy Forecasting in the Era of IoT Enabled Smart Grids

  • Dimitrios AnagnostosEmail author
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

This chapter provides an overview about forecast models on temporal and spatial scales to enable smart methodologies for design and control. In order to succeed in this scope, a number of IoT components, such as distributed sensors, actuators, as well as decision-making devices are necessary. Additionally, by integrating smart grid and energy forecast with big data analytics and deep learning services, it enables to produce accurate and detailed local forecasts, in order to control the grid dynamically.

References

  1. 1.
    Anagnostos, D., Schmidt, T., Cavadias, S., Soudris, D., Poortmans, J., Catthoor, F.: A method for detailed, short-term energy yield forecasting of photovoltaic installations. Renew. Energy 130, 122–129 (2019).  https://doi.org/10.1016/j.renene.2018.06.058, http://www.sciencedirect.com/science/article/pii/S0960148118307109CrossRefGoogle Scholar
  2. 2.
    Andrae, A.S.G., Edler, T.: On global electricity usage of communication technology: trends to 2030. Challenges 6(1), 117–157 (2015).  https://doi.org/10.3390/challe6010117, http://www.mdpi.com/2078-1547/6/1/117CrossRefGoogle Scholar
  3. 3.
    Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., de Pison, F.M., Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Sol. Energy 136, 78–111 (2016).  https://doi.org/10.1016/j.solener.2016.06.069, http://www.sciencedirect.com/science/article/pii/S0038092X1630250XCrossRefGoogle Scholar
  4. 4.
    Aksanli, B., Venkatesh, J., Zhang, L., Rosing, T.: Utilizing green energy prediction to schedule mixed batch and service jobs in data centers. In: Proceedings of the 4th Workshop on Power-Aware Computing and Systems, HotPower’11, pp. 5:1–5:5. ACM, New York, NY, USA (2011).  https://doi.org/10.1145/2039252.2039257
  5. 5.
    Avgerinou, M., Bertoldi, P., Castellazzi, L.: Trends in data centre energy consumption under the European code of conduct for data centre energy efficiency. Energies 10(10) (2017)CrossRefGoogle Scholar
  6. 6.
    Elsinga, B., van Sark, W.G.: Short-term peer-to-peer solar forecasting in a network of photovoltaic systems. Appl. Energy 206, 1464–1483 (2017).  https://doi.org/10.1016/j.apenergy.2017.09.115, http://www.sciencedirect.com/science/article/pii/S0306261917314010CrossRefGoogle Scholar
  7. 7.
    Faruqui, A., Harris, D., Hledik, R.: Unlocking the 53 billion savings from smart meters in the EU: how increasing the adoption of dynamic tariffs could make or break the EU’s smart grid investment. Energy Policy 38(10), 6222–6231 (2010).  https://doi.org/10.1016/j.enpol.2010.06.010, http://www.sciencedirect.com/science/article/pii/S0301421510004738. (The socio-economic transition towards a hydrogen economy - findings from European research, with regular papers)CrossRefGoogle Scholar
  8. 8.
    Goiri, Í., Haque, M.E., Le, K., Beauchea, R., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: Matching renewable energy supply and demand in green datacenters. Ad Hoc Netw. 25, 520–534 (2015).  https://doi.org/10.1016/j.adhoc.2014.11.012, http://www.sciencedirect.com/science/article/pii/S1570870514002649. (New Research Challenges in Mobile, Opportunistic and Delay-Tolerant Networks Energy-Aware Data Centers: Architecture, Infrastructure, and Communication)CrossRefGoogle Scholar
  9. 9.
    IEA: Global EV outlook (2018)Google Scholar
  10. 10.
    IRENA: Renewable power generation costs in 2017 (2018)Google Scholar
  11. 11.
    Jia, J., Seitz, L.C., Benck, J.D., Huo, Y., Chen, Y., Ng, J.W.D., Bilir, T., Harris, J.S., Jaramillo, T.F.: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7 (2016).  https://doi.org/10.1038/ncomms13237
  12. 12.
    Kong, P.: Wireless neighborhood area networks with QoS support for demand response in smart grid. IEEE Trans. Smart Grid 7(4), 1913–1923 (2016).  https://doi.org/10.1109/TSG.2015.2421991CrossRefGoogle Scholar
  13. 13.
    Kraemer, F.A., Ammar, D., Braten, A.E., Tamkittikhun, N., Palma, D.: Solar energy prediction for constrained IoT nodes based on public weather forecasts. In: Proceedings of the Seventh International Conference on the Internet of Things, IoT’17, pp. 2:1–2:8. ACM, New York, NY, USA (2017).  https://doi.org/10.1145/3131542.3131544
  14. 14.
    Kuhn, P., Nouri, B., Wilbert, S., Prahl, C., Kozonek, N., Schmidt, T., Yasser, Z., Ramirez, L., Zarzalejo, L., Meyer, A., Vuilleumier, L., Heinemann, D., Blanc, P., Pitz-Paal, R.: Validation of an all-sky imager based nowcasting system for industrial PV plants. Prog. Photovolt. Res. Appl. 26(8), 608–621 (2017).  https://doi.org/10.1002/pip.2968, https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.2968CrossRefGoogle Scholar
  15. 15.
    Lai, C.S., McCulloch, M.D.: Levelized cost of energy for PV and grid scale energy storage systems. CoRR arXiv:abs/1609.06000 (2016). http://arxiv.org/abs/1609.06000
  16. 16.
    Li, L., Ota, K., Dong, M.: When weather matters: Iot-based electrical load forecasting for smart grid. IEEE Commun. Mag. 55(10), 46–51 (2017).  https://doi.org/10.1109/MCOM.2017.1700168CrossRefGoogle Scholar
  17. 17.
    Lorenz, E., Ruiz-Arias, J., Wilbert, S.: Forecasting solar radiation (2017)Google Scholar
  18. 18.
    Ma, L., Liu, N., Wang, L., Zhang, J., Lei, J., Zeng, Z., Wang, C., Cheng, M.: Multi-party energy management for smart building cluster with PV systems using automatic demand response. Energy Build. 121, 11–21 (2016).  https://doi.org/10.1016/j.enbuild.2016.03.072, http://www.sciencedirect.com/science/article/pii/S0378778816302286CrossRefGoogle Scholar
  19. 19.
    Marinakis, V., Doukas, H.: An advanced IoT-based system for intelligent energy management in buildings. Sensors 18(2) (2018)CrossRefGoogle Scholar
  20. 20.
    Mocanu, E., Aduda, K.O., Nguyen, P.H., Boxem, G., Zeiler, W., Gibescu, M., Kling, W.L.: Optimizing the energy exchange between the smart grid and building systems. In: 2014 49th International Universities Power Engineering Conference (UPEC), pp. 1–6 (2014).  https://doi.org/10.1109/UPEC.2014.6934772
  21. 21.
    Mohajeri, N., Upadhyay, G., Gudmundsson, A., Assouline, D., Kmpf, J., Scartezzini, J.L.: Effects of urban compactness on solar energy potential. Renew. Energy 93, 469–482 (2016).  https://doi.org/10.1016/j.renene.2016.02.053, http://www.sciencedirect.com/science/article/pii/S0960148116301549CrossRefGoogle Scholar
  22. 22.
    Mwasilu, F., Justo, J.J., Kim, E.K., Do, T.D., Jung, J.W.: Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 34, 501–516 (2014).  https://doi.org/10.1016/j.rser.2014.03.031, http://www.sciencedirect.com/science/article/pii/S1364032114001920CrossRefGoogle Scholar
  23. 23.
    Mgel, O., Mathieu, J.L., Andersson, G.: Scheduling distributed energy storage units to provide multiple services under forecast error. Int. J. Electr. Power Energy Syst. 72, 48–57 (2015).  https://doi.org/10.1016/j.ijepes.2015.02.010, http://www.sciencedirect.com/science/article/pii/S0142061515000939. (The Special Issue for 18th Power Systems Computation Conference)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Tu, C., He, X., Shuai, Z., Jiang, F.: Big data issues in smart grid a review. Renew. Sustain. Energy Rev. 79, 1099–1107 (2017).  https://doi.org/10.1016/j.rser.2017.05.134, http://www.sciencedirect.com/science/article/pii/S1364032117307748CrossRefGoogle Scholar
  26. 26.
    Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017).  https://doi.org/10.1016/j.renene.2016.12.095, http://www.sciencedirect.com/science/article/pii/S0960148116311648CrossRefGoogle Scholar
  27. 27.
    Yang, D., Dong, Z., Reindl, T., Jirutitijaroen, P., Walsh, W.M.: Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage. Sol. Energy 103, 550–562 (2014).  https://doi.org/10.1016/j.solener.2014.01.024, http://www.sciencedirect.com/science/article/pii/S0038092X14000425CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Technical University of AthensAthensGreece
  2. 2.Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations