Smart Grid Hardware Security

  • Argiris Sideris
  • Dimitris Tsiktsiris
  • Dimitris Ziouzios
  • Minas Dasygenis
Part of the Power Systems book series (POWSYS)


Smart grids are vulnerable to a multitude of attacks, due to their cyber-physical nature. Such attacks can occur at their communication, networking, and physical entry points and can seriously affect the operation of a grid. Thus, the security factor of a smart grid is of an utmost importance. In order to properly secure a smart grid, we should be able to understand its underlying vulnerabilities and associated threats, as well as quantify their effects, and devise appropriate security solutions. In this chapter, we begin with an introduction to smart grids and Hardware Security. Then we continue to describe some grid architecture patterns, so that we can be able to understand a general picture of the grid functionality. In the next section, we discuss the basic and most important aspect of the security of the smart grid; the secure communication between the devices, providing some techniques for a secure device authentication scheme. We, then, discuss the confidentiality of the power usage, explaining various methods for metering data anonymization. In the end, we present solutions related to the integrity of data, software and hardware.


  1. 1.
    Welcome to trusted computing group.
  2. 2.
    IEC TR 61850-90-5:2012 (2012).
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    National institute of standards and technology (2018).
  8. 8.
    Baumeister, T.: Adapting pki for the smart grid. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 249–254. IEEE (2011)Google Scholar
  9. 9.
    Berthier, R., Sanders, W.H., Khurana, H.: Intrusion detection for advanced metering infrastructures: Requirements and architectural directions. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 350–355. IEEE (2010)Google Scholar
  10. 10.
    Bou-Harb, E., Fachkha, C., Pourzandi, M., Debbabi, M., Assi, C.: Communication security for smart grid distribution networks. IEEE Commun. Mag. 51(1), 42–49 (2013)CrossRefGoogle Scholar
  11. 11.
    Case, D.U.: Analysis of the cyber attack on the ukrainian power grid. Electricity Information Sharing and Analysis Center (E-ISAC) (2016)Google Scholar
  12. 12.
    Chandy, K.M., Gooding, J., McDonald, J.: Smart grid system-of-systems architectures. Asset. Sce, Com (2010)Google Scholar
  13. 13.
    Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc, Sebastopol (2004)Google Scholar
  14. 14.
    Cleveland, F.: IEC TC57 WG15: IEC 62351 security standards for the power system information infrastructure. White Paper (2012)Google Scholar
  15. 15.
    Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: An update on sipher (scalable implementation of primitives for homomorphic encryption)fpga implementation using simulink. In: 2012 IEEE Conference on High Performance Extreme Computing (HPEC), pp. 1–5. IEEE (2012)Google Scholar
  16. 16.
    Cui, S., Han, Z., Kar, S., Kim, T.T., Poor, H.V., Tajer, A.: Coordinated data-injection attack and detection in the smart grid: a detailed look at enriching detection solutions. IEEE Signal Process. Mag. 29(5), 106–115 (2012)CrossRefGoogle Scholar
  17. 17.
    Dworkin, M.: Recommendation for block cipher modes of operation. methods and techniques. Technical report, National Inst of Standards and Technology Gaithersburg Md Computer Security Div (2001)Google Scholar
  18. 18.
    Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymization of smart metering data. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 238–243. IEEE (2010)Google Scholar
  19. 19.
    Ericsson, G.N.: Cyber security and power system communicationessential parts of a smart grid infrastructure. IEEE Trans. Power Deliv. 25(3), 1501–1507 (2010)CrossRefGoogle Scholar
  20. 20.
    Fairley, P.: Cybersecurity at us utilities due for an upgrade: Tech to detect intrusions into industrial control systems will be mandatory [news]. IEEE Spectr. 53(5), 11–13 (2016)CrossRefGoogle Scholar
  21. 21.
    Falk, R., Fries, S.: Security considerations for multicast communication in power systems. Int. J. Adv. Sec. 6(3) (2013)Google Scholar
  22. 22.
    Fuloria, S., Anderson, R., McGrath, K., Hansen, K., Alvarez, F.: The protection of substation communications. In: Proceedings of SCADA Security Scientific Symposium (2010)Google Scholar
  23. 23.
    Gribbon, K., Johnston, C., Bailey, D.G.: A real-time fpga implementation of a barrel distortion correction algorithm with bilinear interpolation. In: Image and Vision Computing New Zealand, pp. 408–413 (2003)Google Scholar
  24. 24.
    Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Security challenges in the ip-based internet of things. Wirel. Pers. Commun. 61(3), 527–542 (2011)CrossRefGoogle Scholar
  25. 25.
    International Electrotechnical Commission: IEC-TS 62351-6: Power Systems Management and Associated Information Exchange-Data and Comunications Security. Security for IEC 61850. IEC (2007)Google Scholar
  26. 26.
    International Electrotechnical Commission: IEC 61850-1 ed2.0 Communication Networks and Systems for Power Utility Automation Part 1. Introduction and Overview. IEC (2013)Google Scholar
  27. 27.
    Jiang, J., Luk, W., Rueckert, D.: Fpga-based computation of free-form deformations. In: International Conference on Field Programmable Logic and Applications, pp. 1057–1061. Springer (2003)Google Scholar
  28. 28.
    Kerckhoffs, A.: La cryptographie militaire, ou, Des chiffres usités en temps de guerre: avec un nouveau procédé de déchiffrement applicable aux systèmes à double clef. Librairie militaire de L, Baudoin (1883)Google Scholar
  29. 29.
    Komninos, N., Philippou, E., Pitsillides, A.: Survey in smart grid and smart home security: issues, challenges and countermeasures. IEEE Commun. Surv. Tutor. 16(4), 1933–1954 (2014)CrossRefGoogle Scholar
  30. 30.
    Kühn, U., Kursawe, K., Lucks, S., Sadeghi, A.R., Stüble, C.: Secure data management in trusted computing. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 324–338. Springer (2005)Google Scholar
  31. 31.
    Kushner, D.: The real story of stuxnet. IEEE Spectr. 50(3), 48–53 (2013)CrossRefGoogle Scholar
  32. 32.
    Kuvshinkova, S.: Sql slammer worm lessons learned for consideration by the electricity sector. N. Am. Electric Reliab. Counc. 1(2), 5 (2003)Google Scholar
  33. 33.
    Li, C., Srinivasan, D., Reindl, T.: Hardware-assisted malware detection for embedded systems in smart grid. In: 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), pp. 1–6. IEEE (2015)Google Scholar
  34. 34.
    Liu, J., Xiao, Y., Li, S., Liang, W., Chen, C.L.P.: Cyber security and privacy issues in smart grids. IEEE Commun. Surv. Tutor. 14(4), 981–997 (2012). Scholar
  35. 35.
    Liu, Y., Briones, J., Zhou, R., Magotra, N.: Study of secure boot with a fpga-based iot device. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1053–1056 (2017).
  36. 36.
    McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execution infrastructure for tcb minimization. In: ACM SIGOPS Operating Systems Review, vol. 42, pp. 315–328. ACM (2008)Google Scholar
  37. 37.
    Metke, A.R., Ekl, R.L.: Security technology for smart grid networks. IEEE Trans. Smart Grid 1(1), 99–107 (2010)CrossRefGoogle Scholar
  38. 38.
    Meyer, S., Ruppen, A., Magerkurth, C.: Internet of things-aware process modeling: integrating iot devices as business process resources. In: International conference on advanced information systems engineering, pp. 84–98. Springer (2013)Google Scholar
  39. 39.
    Mishra, A., Suhas, B., Kumar, S.: Profiling techniques in questasim and design of a profiler hardware module. IUP J. Telecommun. 9(1), 54 (2017)Google Scholar
  40. 40.
    Mo, Y., Kim, T.H.J., Brancik, K., Dickinson, D., Lee, H., Perrig, A., Sinopoli, B.: Cyber-physical security of a smart grid infrastructure. Proc. IEEE 100(1), 195–209 (2012)CrossRefGoogle Scholar
  41. 41.
    Montes, A.M., Penazzi, D.: Dos nuevos algoritmos de cifrado autenticado: Silver y cpfb. In: XLIII Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO)-VI Workshop de Seguridad Informática (Buenos Aires, 2014) (2014)Google Scholar
  42. 42.
    Nützel, J., Beyer, A.: How to increase the security of digital rights management systems without affecting consumers security. In: Emerging Trends in Information and Communication Security, pp. 368–380. Springer (2006)Google Scholar
  43. 43.
    Paverd, A.J., Martin, A.P.: Hardware security for device authentication in the smart grid. In: International Workshop on Smart Grid Security, pp. 72–84. Springer (2012)Google Scholar
  44. 44.
    Poulsen, K.: Slammer worm crashed ohio nuke plant net. The Register 20 (2003)Google Scholar
  45. 45.
    Purnima, N., Omprakash, P.: Fpga based distributed network intrusion detection in smart grids using naives bayes classifier. Int. J. Inf. Comput. Technol. 4(7), 747–752 (2014)Google Scholar
  46. 46.
    Quinn, E.L.: Privacy and the new energy infrastructure. SSRN Electronic Journal (2009)Google Scholar
  47. 47.
    Quinn, E.L.: Smart Metering & Privacy: Existing Law and Competing Policies: a Report for the Colorado Public Utilities Commission. Colorado Public Utilities Commission (2009)Google Scholar
  48. 48.
    Rahmatian, M., Kooti, H., Harris, I.G., Bozorgzadeh, E.: Hardware-assisted detection of malicious software in embedded systems. IEEE Embedded Syst. Lett. 4(4), 94–97 (2012)CrossRefGoogle Scholar
  49. 49.
    Thanasoulis, V., Partzsch, J., Hartmann, S., Mayr, C., Schüffny, R.: Dedicated fpga communication architecture and design for a large-scale neuromorphic system. In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 877–880. IEEE (2012)Google Scholar
  50. 50.
    TPM: Trusted computing group: Tpm main specifications part 1: Design principles, part 2: Tpm structures, part 3: Commands (2011)Google Scholar
  51. 51.
    Ukil, A., Sen, J., Koilakonda, S.: Embedded security for internet of things. In: 2011 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS), pp. 1–6. IEEE (2011)Google Scholar
  52. 52.
    Urbina, M., Moreira, N., Rodriguez, M., Acosta, T., Lázaro, J., Astarloa, A.: Secure protocol and ip core for configuration of networking hardware ips in the smart grid. Energies 11(3), 510 (2018)CrossRefGoogle Scholar
  53. 53.
    Wei, D., Lu, Y., Jafari, M., Skare, P.M., Rohde, K.: Protecting smart grid automation systems against cyberattacks. IEEE Trans. Smart Grid 2(4), 782–795 (2011)CrossRefGoogle Scholar
  54. 54.
    Yang, P.L., Marek-Sadowska, M.: A fast, fully verifiable, and hardware predictable asic design methodology. In: 2016 IEEE 34th International Conference on Computer Design (ICCD), pp. 364–367. IEEE (2016)Google Scholar
  55. 55.
    Zhang, C.N., Xiao, X., Yu, F.: An fpga intellectual property authentication scheme through watermarking techniques. In: Proceedings of the 5th WSEAS International Conference on Instrumentation, Measurement, Circuits and Systems, IMCAS’06, pp. 262–267. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2006).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Informatics and Telecommunications EngineeringKozaniGreece

Personalised recommendations